Application of Zeolite, Pumice, and Activated Carbon for Lowering Water Hardness and Total Dissolved Solids (TDS)

Authors

  • Retno Wulandari Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia
  • Ken Ima Damayanti Universitas Serang Raya, Serang, Indonesia
  • Shohifah Annur Universitas Serang Raya, Serang, Indonesia
  • Lusi Irawati Universitas Serang Raya, Serang, Indonesia
  • Ari Irmawan Universitas Serang Raya, Serang, Indonesia
  • Fikri Firman Syah Universitas Serang Raya, Serang, Indonesia

DOI:

https://doi.org/10.38035/ijam.v4i2.903

Keywords:

Zeolite, Pumice, Activated Carbon, TDS, Hardness

Abstract

Water is one of the most essential natural resources for living organisms. Tonjong Village is a residential, agricultural, and fish farming area. According to the test results from the Environmental Laboratory Unit of the Environmental Agency, the groundwater quality in Tonjong Village shows the following physical and chemical parameters: TDS 3352 mg/L, TSS 11 mg/L, pH 6.85, Hardness (CaCO?) 1100 mg/L, COD 9.34 mg/L, and BOD 2.40 mg/L. This study aims to reduce TDS and water hardness using a multi-stage treatment method. The research consists of three stages: the preliminary stage, the equipment fabrication stage, and the testing stage. The results indicate a decrease in TDS from 3352 mg/L to 1380 mg/L and a reduction in hardness using material variation 2 from 1100 mg/L to 752.5 mg/L.

References

Ackley, M. W., Rege, S. U., & Saxena, H. (2003). Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61(1–3), 25–42. https://doi.org/10.1016/S1387-1811(03)00353-6

Ahsan, S., Kaneco, S., Ohta, K., Mizuno, T., & Kani, K. (2001). Use of some natural and waste materials for waste water treatment. Water Research, 35(15), 3738–3742. https://doi.org/10.1016/S0043-1354(01)00047-1

Al-Anber, M., & Al-Anber, Z. A. (2008). Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination, 225(1–3), 70–81. https://doi.org/10.1016/j.desal.2007.07.006

Aragaw, T. A., & Ayalew, A. A. (2019). Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method. Water Practice and Technology, 14(1), 145–159. https://doi.org/10.2166/wpt.2018.116

Arrigo, I., Catalfamo, P., Cavallari, L., & Di Pasquale, S. (2007). Use of zeolitized pumice waste as a water softening agent. Journal of Hazardous Materials, 147(1–2), 513–517. https://doi.org/10.1016/j.jhazmat.2007.01.061

Asiva Noor Rachmayani. (2015). No ????????????????????? ?????????????????Title. 1(2), 6.

Çifçi, D. ?., & Meriç, S. (2016). A review on pumice for water and wastewater treatment. Desalination and Water Treatment, 57(39), 18131–18143. https://doi.org/10.1080/19443994.2015.1124348

Danielopol, D. L., Griebler, C., Gunatilaka, A., & Notenboom, J. (2003). Present state and future prospects for groundwater ecosystems. Environmental Conservation, 30(2), 104–130. https://doi.org/10.1017/S0376892903000109

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013

Gao, X., Huo, Z., Xu, X., Qu, Z., Huang, G., Tang, P., & Bai, Y. (2018). Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation. Agricultural Water Management, 208(17), 43–58. https://doi.org/10.1016/j.agwat.2018.06.009

Guida, S., Potter, C., Jefferson, B., & Soares, A. (2020). Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-69348-6

Khoiriyah, Q., & Purnomo, Y. S. (2024). Kemampuan Zeolit dan Batu Apung Sebagai Media Filter dan Adsorpsi untuk Menyisihkan Salinitas, TDS, Konduktivitas dan TSS Pada Air Payau Menjadi Air Bersih. Jurnal Serambi Engineering, 9(3), 9920–9925. https://jse.serambimekkah.id/index.php/jse/article/view/344

Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98. https://doi.org/10.1016/j.cej.2006.01.015

Lou, J. C., Lee, W. L., & Han, J. Y. (2007). Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction. Journal of Environmental Management, 82(1), 1–12. https://doi.org/10.1016/j.jenvman.2005.11.017

Malekmohammadi, S., Mirbagheri, A., & Ehteshami, M. (2016). Comparison of silica , activated carbon , and zeolite adsorbents in the removal of ammonium , iron , COD , turbidity and phosphate pollutants , and investigating the effect of discharge on the removal of pollutant s. International Journal of Humanities and Cultural Studies, August 2016, 667–679.

Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001

Mohan, D., Singh, K. P., & Singh, V. K. (2008). Wastewater treatment using low cost activated carbons derived from agricultural byproducts-A case study. Journal of Hazardous Materials, 152(3), 1045–1053. https://doi.org/10.1016/j.jhazmat.2007.07.079

Ostovar, M., & Amiri, M. (2013). A Novel Eco?Friendly Technique for Efficient Control of Lime Water Softening Process. Water Environment Research, 85(12), 2285–2293. https://doi.org/10.2175/106143013x13807328848333

Santos, S., Ungureanu, G., Boaventura, R., & Botelho, C. (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521–522(1), 246–260. https://doi.org/10.1016/j.scitotenv.2015.03.107

Sepehr, M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K., & Ghaffari, H. R. (2013). Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Applied Surface Science, 274, 295–305. https://doi.org/10.1016/j.apsusc.2013.03.042

Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

Syam, S., & Beso, Y. (2019). Kemampuan Zeolit Alam Dan Batu Apung Dalam Menurunkan Kadar Klorida Pada Air Payau. Sulolipu: Media Komunikasi Sivitas Akademika Dan Masyarakat, 17(2), 98. https://doi.org/10.32382/sulolipu.v17i2.864

Zia, Z., Hartland, A., & Mucalo, M. R. (2020). Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. International Journal of Environmental Science and Technology, 17(10), 4389–4406. https://doi.org/10.1007/s13762-020-02764-3

Published

2025-07-12

How to Cite

Wulandari, R., Damayanti, K. I., Annur, S., Irawati, L., Irmawan, A., & Syah, F. F. (2025). Application of Zeolite, Pumice, and Activated Carbon for Lowering Water Hardness and Total Dissolved Solids (TDS) . International Journal of Advanced Multidisciplinary, 4(2), 262–270. https://doi.org/10.38035/ijam.v4i2.903