Application of Zeolite, Pumice, and Activated Carbon for Lowering Water Hardness and Total Dissolved Solids (TDS)
DOI:
https://doi.org/10.38035/ijam.v4i2.903Keywords:
Zeolite, Pumice, Activated Carbon, TDS, HardnessAbstract
Water is one of the most essential natural resources for living organisms. Tonjong Village is a residential, agricultural, and fish farming area. According to the test results from the Environmental Laboratory Unit of the Environmental Agency, the groundwater quality in Tonjong Village shows the following physical and chemical parameters: TDS 3352 mg/L, TSS 11 mg/L, pH 6.85, Hardness (CaCO?) 1100 mg/L, COD 9.34 mg/L, and BOD 2.40 mg/L. This study aims to reduce TDS and water hardness using a multi-stage treatment method. The research consists of three stages: the preliminary stage, the equipment fabrication stage, and the testing stage. The results indicate a decrease in TDS from 3352 mg/L to 1380 mg/L and a reduction in hardness using material variation 2 from 1100 mg/L to 752.5 mg/L.
References
Ackley, M. W., Rege, S. U., & Saxena, H. (2003). Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61(1–3), 25–42. https://doi.org/10.1016/S1387-1811(03)00353-6
Ahsan, S., Kaneco, S., Ohta, K., Mizuno, T., & Kani, K. (2001). Use of some natural and waste materials for waste water treatment. Water Research, 35(15), 3738–3742. https://doi.org/10.1016/S0043-1354(01)00047-1
Al-Anber, M., & Al-Anber, Z. A. (2008). Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination, 225(1–3), 70–81. https://doi.org/10.1016/j.desal.2007.07.006
Aragaw, T. A., & Ayalew, A. A. (2019). Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method. Water Practice and Technology, 14(1), 145–159. https://doi.org/10.2166/wpt.2018.116
Arrigo, I., Catalfamo, P., Cavallari, L., & Di Pasquale, S. (2007). Use of zeolitized pumice waste as a water softening agent. Journal of Hazardous Materials, 147(1–2), 513–517. https://doi.org/10.1016/j.jhazmat.2007.01.061
Asiva Noor Rachmayani. (2015). No ????????????????????? ?????????????????Title. 1(2), 6.
Çifçi, D. ?., & Meriç, S. (2016). A review on pumice for water and wastewater treatment. Desalination and Water Treatment, 57(39), 18131–18143. https://doi.org/10.1080/19443994.2015.1124348
Danielopol, D. L., Griebler, C., Gunatilaka, A., & Notenboom, J. (2003). Present state and future prospects for groundwater ecosystems. Environmental Conservation, 30(2), 104–130. https://doi.org/10.1017/S0376892903000109
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
Gao, X., Huo, Z., Xu, X., Qu, Z., Huang, G., Tang, P., & Bai, Y. (2018). Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation. Agricultural Water Management, 208(17), 43–58. https://doi.org/10.1016/j.agwat.2018.06.009
Guida, S., Potter, C., Jefferson, B., & Soares, A. (2020). Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-69348-6
Khoiriyah, Q., & Purnomo, Y. S. (2024). Kemampuan Zeolit dan Batu Apung Sebagai Media Filter dan Adsorpsi untuk Menyisihkan Salinitas, TDS, Konduktivitas dan TSS Pada Air Payau Menjadi Air Bersih. Jurnal Serambi Engineering, 9(3), 9920–9925. https://jse.serambimekkah.id/index.php/jse/article/view/344
Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98. https://doi.org/10.1016/j.cej.2006.01.015
Lou, J. C., Lee, W. L., & Han, J. Y. (2007). Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction. Journal of Environmental Management, 82(1), 1–12. https://doi.org/10.1016/j.jenvman.2005.11.017
Malekmohammadi, S., Mirbagheri, A., & Ehteshami, M. (2016). Comparison of silica , activated carbon , and zeolite adsorbents in the removal of ammonium , iron , COD , turbidity and phosphate pollutants , and investigating the effect of discharge on the removal of pollutant s. International Journal of Humanities and Cultural Studies, August 2016, 667–679.
Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001
Mohan, D., Singh, K. P., & Singh, V. K. (2008). Wastewater treatment using low cost activated carbons derived from agricultural byproducts-A case study. Journal of Hazardous Materials, 152(3), 1045–1053. https://doi.org/10.1016/j.jhazmat.2007.07.079
Ostovar, M., & Amiri, M. (2013). A Novel Eco?Friendly Technique for Efficient Control of Lime Water Softening Process. Water Environment Research, 85(12), 2285–2293. https://doi.org/10.2175/106143013x13807328848333
Santos, S., Ungureanu, G., Boaventura, R., & Botelho, C. (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521–522(1), 246–260. https://doi.org/10.1016/j.scitotenv.2015.03.107
Sepehr, M. N., Zarrabi, M., Kazemian, H., Amrane, A., Yaghmaian, K., & Ghaffari, H. R. (2013). Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Applied Surface Science, 274, 295–305. https://doi.org/10.1016/j.apsusc.2013.03.042
Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064
Syam, S., & Beso, Y. (2019). Kemampuan Zeolit Alam Dan Batu Apung Dalam Menurunkan Kadar Klorida Pada Air Payau. Sulolipu: Media Komunikasi Sivitas Akademika Dan Masyarakat, 17(2), 98. https://doi.org/10.32382/sulolipu.v17i2.864
Zia, Z., Hartland, A., & Mucalo, M. R. (2020). Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. International Journal of Environmental Science and Technology, 17(10), 4389–4406. https://doi.org/10.1007/s13762-020-02764-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Retno Wulandari, Ken Ima Damayanti, Shohifah Annur, Lusi Irawati, Ari Irmawan, Fikri Firman Syah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish their manuscripts in this journal agree to the following conditions:
- The copyright on each article belongs to the author(s).
- The author acknowledges that the International Journal of Advanced Multidisciplinary (IJAM) has the right to be the first to publish with a Creative Commons Attribution 4.0 International license (Attribution 4.0 International (CC BY 4.0).
- Authors can submit articles separately, arrange for the non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g., sent to the author's institutional repository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the International Journal of Advanced Multidisciplinary (IJAM).