Supercapacitor Implementation To Prototype Energy Storage System Optimizer in PV System


  • Muhamad Zakaria National Institute of Science and Technology, Jakarta, Indonesia
  • Abdul Multi National Institute of Science and Technology, Jakarta, Indonesia
  • Agus Sofwan National Institute of Science and Technology, Jakarta, Indonesia



PV System, Supercapacitor, Battery, Storage Energy System


This research aims to create a prototype of an energy storage optimizer in a PV system using a supercapacitor in combination with batteries. The purpose of adding supercapacitors in this prototype is to maintain battery usage when there is a change in irradiation with a loading source that refers to the amount of electrical current and voltage as a supply of energy. A sudden increase in load without an energy buffer component can affect battery endurance. This can result in a decrease in electrical energy supply. Based on experimental results, it has been found that the battery and supercapacitor complement each other. The battery works more statically while the supercapacitor works more dynamically. Thus, the power output to the load is more stable, and the battery can be more durable because when there are extreme changes in irradiation and load, they can be overcome by supercapacitors.


A. Chmielewski, P. Piórkowski, R. Gumi?ski, K. Bogdzi?ski, and J. Mo?aryn. 2018. “Model-Based Research on Ultracapacitors,” pp. 254–264. doi: 10.1007/978-3-319-77179-3_24.
A. S. Al-Ezzi and M. N. M. Ansari. 2022. “Photovoltaic Solar Cells: A Review,” Applied System Innovation, vol. 5, no. 4, p. 67, doi: 10.3390/asi5040067.
Aditya Setiadi Putra. 2018. Desain dan Simulasi Sistem Penyimpanan Energi Hybrid Menggunakan Superkapasitor dan Baterai Pada Pembangkit Listrik Tenaga Surya. Thesis. Surabaya: Institut Teknologi Sepuluh Nopember Surabaya.
Dewa Gde Santika, Ig. Prasetya Dwi Wibawa, and Rizki Ardianto.P. 2020. “Desain Dan Implementasi Superkapasitor Sebagai Buffer Storage Baterai,” e-Proceeding of Engineering , vol. 7, no. 1.
F. Naseri, S. Karimi, E. Farjah, and E. Schaltz. 2022. “Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques,” Renewable and Sustainable Energy Reviews, vol. 155, p. 111913, doi: 10.1016/j.rser.2021.111913.
F. Wang, X.-K. Liu, and F. Gao, “Fundamentals of Solar Cells and Light-Emitting Diodes. 2019. ” in Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, Elsevier, pp. 1–35. doi: 10.1016/B978-0-12-813647-8.00001-1.
I. Baccouche, S. Jemmali, B. Manai, N. Omar, and N. Amara. 2017. “Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter,” Energies (Basel), vol. 10, no. 6, p. 764, doi: 10.3390/en10060764.
M. E. Glavin., P. K. W. Chan., S. Armstrong, and W. G. Hurley. 2008. “A stand-alone photovoltaic supercapacitor battery hybrid energy storage system,” in 2008 13th International Power Electronics and Motion Control Conference, IEEE, pp. 1688–1695. doi: 10.1109/EPEPEMC.2008.4635510.
M. E. ?ahin and F. Blaabjerg. 2020. “A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink,” Electronics (Basel), vol. 9, no. 1, p. 129, doi: 10.3390/electronics9010129.
M. Khalid. 2019. “A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids,” Energies (Basel), vol. 12, no. 23, p. 4559, doi: 10.3390/en12234559.
M. ?ahin, F. Blaabjerg, and A. Sangwongwanich. 2022. “A Comprehensive Review on Supercapacitor Applications and Developments,” Energies (Basel), vol. 15, no. 3, p. 674, doi: 10.3390/en15030674.
M. Salanne, “Ionic Liquids for Supercapacitor Applications. 2017. ” Top Curr Chem, vol. 375, no. 3, p. 63, doi: 10.1007/s41061-017-0150-7.
R. P. Smith, A. A.-C. Hwang, T. Beetz, and E. Helgren. 2018. “Introduction to semiconductor processing: Fabrication and characterization of p-n junction silicon solar cells,” Am J Phys, vol. 86, no. 10, pp. 740–746, doi: 10.1119/1.5046424.
S. Jafari, Z. Shahbazi, Y.-C. Byun, and S.-J. Lee. 2022. “Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach,” Mathematics, vol. 10, no. 6, p. 888, doi: 10.3390/math10060888.
S. O. Amrouche, D. Rekioua, and T. Rekioua. 2015. “Overview of energy storage in renewable energy systems,” in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), IEEE, pp. 1–6. doi: 10.1109/IRSEC.2015.7454988.
W. Jing, C. Hung Lai, S. H. W. Wong, and M. L. D. Wong. 2017. “Battery?supercapacitor hybrid energy storage system in standalone DC microgrids: areview,” IET Renewable Power Generation, vol. 11, no. 4, pp. 461–469, doi: 10.1049/iet-rpg.2016.0500.
W. Zhou, Y. Zheng, Z. Pan, and Q. Lu. 2021. “Review on the Battery Model and SOC Estimation Method,” Processes, vol. 9, no. 9, p. 1685, doi: 10.3390/pr9091685.
X. Zhang, J. Hou, Z. Wang, and Y. Jiang. 2022. “Study of SOC Estimation by the Ampere-Hour Integral Method with Capacity Correction Based on LSTM,” Batteries, vol. 8, no. 10, p. 170, doi: 10.3390/batteries8100170.
Z. S. Iro, C. Subramani, and S. S. Dash. 2016. “A Brief Review on Electrode Materials for Supercapacitor,” Int J Electrochem Sci, vol. 11, no. 12, pp. 10628–10643, doi: 10.20964/2016.12.50.



How to Cite

Zakaria, M., Multi, A., & Sofwan, A. (2024). Supercapacitor Implementation To Prototype Energy Storage System Optimizer in PV System. International Journal of Advanced Multidisciplinary, 2(4), 907–914.