Review of Hybrid Diesel–Solar Power System from Technical and Economic Perspectives at Power Plants in Lombok

Authors

  • Jawoto Tri Prabowo Institut Sains dan Teknologi Nasional, Jakarta, Indonesia
  • Lilly S. Wasitova Institut Sains dan Teknologi Nasional, Jakarta, Indonesia
  • Abdul Multi Institut Sains dan Teknologi Nasional, Jakarta, Indonesia

DOI:

https://doi.org/10.38035/ijam.v4i4.1884

Keywords:

Hybrid System, SFC, Operating Cost, Reliability, CO₂ Emissions

Abstract

Diesel Power Plants remain the main electricity source in Indonesia’s archipelagic country and they are served as isolated power systems, that characterized by high fuel consumption, high operating costs, and significant greenhouse gas emissions. This study evaluates the technical, economic, reliability, environmental, and diesel reduction performance of a hybrid Diesel Power Plants system integrated with solar power and battery energy storage. A quantitative simulation-based approach using HOMER software compares three configurations: conventional Diesel Power Plants, Diesel–Solar PV, and Diesel–Solar PV–BESS. The analysis focuses on energy performance, fuel efficiency, economic indicators, system reliability, and carbon dioxide (CO₂) emissions.

Results show that integrating a 1 MWp PV system and a 1 MWh BESS into a 6 MW Diesel Power Plant in Lombok significantly improves system performance, reducing Specific Fuel Consumption by 4.70% and CO₂ emissions by 4.41%. Economically, the hybrid system lowers Net Present Cost by 3.31%, Operating Cost by 4.78%, and Levelized Cost of Energy by 3.58% to 0.2234 USD/kWh, with a payback period of 2.91 years, while also improving system reliability through reduced unmet load and capacity shortage. These findings confirm that the Diesel Power Plant–Solar PV–BESS configuration is a reliable, cost-effective, and environmentally sustainable diesel reduction solution for island-based power systems in Indonesia.

References

Abidin, Z., Nabila, S., & Arsyad, I. (2024). Study of hybrid system between PLTD and PLTS on Lemukutan Island, Bengkayang Regency. Journal of Electrical Engineering, Energy, and Information Technology, 12(1), 331–341.

Billinton, R., & Allan, R. N. (1996). Reliability evaluation of power systems (2nd ed.). Springer.

Chamdareno, P. G., & Hilal, H. (2021). Analisa pembangkit listrik tenaga hybrid PLTD–PLTS di Pulau Tunda, Serang–Banten. RESISTOR, 1(1), 37–44.

Direktorat Jenderal Ketenagalistrikan. (2021). Statistik ketenagalistrikan 2020. Kementerian Energi dan Sumber Daya Mineral.

Ferguson, C. R., & Kirkpatrick, A. T. (2016). Internal combustion engines: Applied thermosciences (3rd ed.). Wiley.

Fraunhofer Institute for Solar Energy Systems. (2023). Photovoltaics report 2023. Fraunhofer ISE.

Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., Santos, M. M., & dos Santos, E. M. (2016). Energy storage in the energy transition: A review. Renewable and Sustainable Energy Reviews, 65, 800–822.

Ghufron, H. C. (2025). Studi pengembangan pembangkit listrik hybrid berbasis PLTS, PLTD, dan baterai di daerah terpencil Kalimantan Selatan (Tesis magister). Institut Teknologi Bandung.

Heywood, J. B. (2018). Internal combustion engine fundamentals (2nd ed.). McGraw-Hill Education.

Hiron, R., Susanto, A., & Yuliana, P. (2021). Design of hybrid (PV–diesel) system for tourist island in Karimunjawa, Indonesia. International Journal of Renewable Energy, 11(2), 45–52.

International Energy Agency. (2020). Renewables 2020: Analysis and forecast to 2025. IEA.

International Renewable Energy Agency. (2021). Renewable power generation costs in 2020. IRENA.

Kementerian Energi dan Sumber Daya Mineral. (2020). Inventarisasi emisi gas rumah kaca sektor energi tahun 2020. Pusdatin ESDM.

Kementerian Energi dan Sumber Daya Mineral. (2023). Handbook of energy and economic statistics of Indonesia 2022. ESDM.

Kementerian Energi dan Sumber Daya Mineral. (2025). Rencana Umum Ketenagalistrikan Nasional (RUKN). ESDM.

Lewi, L., Yunus, M. Y., Rijal, A. S., Huda, N., & Ikram, A. (2021). Studi perencanaan pembangkit hybrid (PLTS–PLTD) di Pulau Kodingare, Kabupaten Sinjai. Jurnal Teknik Mesin Politeknik Negeri Ujung Pandang, 7(2), 33–41.

Lipu, M. S. H., Uddin, M. S., & Miah, M. A. R. (2013). A feasibility study of solar–wind–diesel hybrid system in rural and remote areas of Bangladesh. International Journal of Renewable Energy Research, 3(4), 893–898.

Maqdis, B., Suhada, F., & Pranata, A. (2025). Analisis dampak penggunaan energi fosil terhadap kualitas udara dan peluang implementasi energi terbarukan di Indonesia. JURITEK, 5(2), 253–258.

Mohamed, R. G., Hassan, A. A., & Abdel Aleem, S. H. E. (2025). A modified energy management strategy for PV/diesel hybrid system to reduce diesel consumption based on Artificial Protozoa Optimizer (APO). Scientific Reports, 15, 4440.

Mitsubishi Heavy Industries. (2010). As-built drawing S16R-PTA-S-1 (MGS1500C diesel generator set). MHI.

Mitsubishi Heavy Industries. (2017). S16R-EN maintenance manual. MHI.

Pratama, A. M. (2025). Analisis desain sistem hibrida PLTD, PLTS, dan baterai pada sistem terisolasi Pulau Wangi-Wangi dengan perencanaan multi tahapan (Tesis magister). Institut Teknologi Bandung.

Rianto, H., & Adi, T. W. (2024). Analisa keekonomian dan optimalisasi sistem pembangkit listrik hybrid tenaga diesel, tenaga surya, dan tenaga hidrogen pada Pulau Sebesi, Lampung. Action Research Literate, 8(11), 3154–3169.

Siddik, M. A., Islam, M. T., Zaman, A. K. M. M., & Hasan, M. M. (2021). Current status and correlation of fossil fuels consumption and greenhouse gas emissions. International Journal of Energy, Environment and Economics, 28(2), 103–120.

Simanjuntak, J. C. H., & Alvianingsih, G. (2021). Analisis tekno-ekonomi hibrid sistem PLTD–PLTS di Pulau Gersik, Belitung. Jurnal Ilmiah SUTET, 11(1), 1–12.

Solangi, K. H., Islam, M. R., Saidur, R., Rahim, N. A., & Fayaz, H. (2011). A review on global solar energy policy. Renewable and Sustainable Energy Reviews, 15(4), 2149–2163.

Stone, R. (2012). Introduction to internal combustion engines (4th ed.). Palgrave Macmillan.

Zainal, A. (2015). Konsumsi BBM untuk pembangkit listrik di Indonesia: Kecenderungan, permasalahan dan solusinya. Jurnal M&E, 13(2), 84–90.

Zakaria, M., Multi, A., & Sofwan, A. (2024). Supercapacitor implementation to prototype energy storage system optimizer in PV system. International Journal of Applied Management, 2(4), 907–914.

Published

2026-02-19

How to Cite

Jawoto Tri Prabowo, Lilly S. Wasitova, & Abdul Multi. (2026). Review of Hybrid Diesel–Solar Power System from Technical and Economic Perspectives at Power Plants in Lombok. International Journal of Advanced Multidisciplinary, 4(4), 701–713. https://doi.org/10.38035/ijam.v4i4.1884