Permodelan Shading Device terhadap Efisiensi Energi pada Bangunan Hunian Studi Kasus: Summarecon Bogor
DOI:
https://doi.org/10.38035/jim.v4i5.1507Keywords:
Smart Technology, Desain Pasif, Efisiensi Energi, Iklim Tropis, Perumahan BerkelanjutanAbstract
Perubahan iklim global telah menyebabkan peningkatan suhu rata-rata bumi, fenomena urban heat island (UHI), serta konsumsi energi yang tinggi dalam sektor perumahan, terutama di wilayah tropis. Penelitian ini mengkaji formulasi integrasi antara smart technology dan desain pasif untuk menghasilkan perumahan tahan iklim tropis yang efisien energi dan berkelanjutan. Pendekatan arsitektur pasif meliputi orientasi bangunan dan strategi shading, sedangkan smart technology mencakup sistem sensor berbasis Internet of Things (IoT), kontrol otomatis, dan analisis berbasis kecerdasan buatan (AI). Penelitian menggunakan metode kuantitatif dengan pendekatan simulasi komputasional (CFD dan EnergyPlus). Lokasi penelitian dilakukan di kawasan Summarecon Bogor, Jawa Barat, yang memiliki karakteristik iklim tropis lembab. Hasil menunjukkan bahwa integrasi desain pasif dan sistem pintar mampu menurunkan pancaran sinar alami karena pemilihan dan posisi shading device yang tepat, efek lain meningkatkan kenyamanan termal, serta menghemat konsumsi energi pendinginan. Penelitian ini memberikan kontribusi penting terhadap pengembangan model perumahan tropis berkelanjutan di Indonesia, sekaligus mendukung pencapaian SDGs 7 (Energi Bersih) dan SDGs 11 (Kota Berkelanjutan).
References
Ahmed, M. (2020). Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. The Science of the Total Environment, 734, 139397. https://doi.org/10.1016/j.scitotenv.2020.139397
Chaudhry, S., & Sidhu, G. (2021). Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports, 41, 1–31. https://doi.org/10.1007/s00299-021-02759-5
El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research International, 27, 22336–22352. https://doi.org/10.1007/s11356-020-08896-w
Hildayanti, A., & Wasilah. (2022). Pendekatan Arsitektur Bioklimatik Sebagai Bentuk Adaptasi Bangunan Terhadap Iklim. Nature: National Academic Journal of Architecture, 9(1), 29–41. https://doi.org/10.24252/nature.v9i1a3
Khraishah, H., Alahmad, B., Ostergard, R., AlAshqar, A., Albaghdadi, M., Vellanki, N., Chowdhury, M., Al-Kindi, S., Zanobetti, A., Gasparrini, A., & Rajagopalan, S. (2022). Climate change and cardiovascular disease: implications for global health. Nature Reviews Cardiology, 19, 798–812. https://doi.org/10.1038/s41569-022-00720-x
Lingkungan, R., & Perkotaan, D. I. (2021). Penerapan prinsip arsitektur hijau pada desain permukiman ramah lingkungan di perkotaan. 618–632.
Muslim, S. (2021). EnergyPlus-Towards the Selection of Right Simulation Tool for Building Energy and Power Systems Research. Journal of Energy and Power Technology, 03, 1. https://doi.org/10.21926/jept.2103034
Priono, A., Sukur, M., & Putro, D. S. (2022). Rancang Bangun Mini Smart Greenhouse Hidroponik Tipe Rakit Apung Berbasis IoT untuk Memenuhi Kebutuhan Praktikum di Laboratorium Teknik Tata Air. Jurnal Pengembangan Potensi Laboratorium, 1(1), 22–26. https://doi.org/10.25047/plp.v1i1.3010
Rafly, M., Maulana, A., Deskar, D., Rahman, A. F., Ramadhan, I. F., Adha, A., & Attala, V. D. (2023). Analysis of the Effects of Globalization and Climate Change on a SustainableIndonesian Economy. Publiciana, 16(1), 25–32.
Shiraiwa, M. (2023). Facing Global Climate and Environmental Change. ACS Environmental Au, 3, 121–122. https://doi.org/10.1021/acsenvironau.3c00014
Sigit Umar Anggono, Edy Siswanto, Laksamana Rajendra Haidar Azani Fajri, & Munifah. (2023). User Interface Berbasis Web Pada Perangkat Internet Of Things. Teknik: Jurnal Ilmu Teknik Dan Informatika, 3(1), 35–54. https://doi.org/10.51903/teknik.v3i1.326
Sippel, S., Meinshausen, N., Fischer, E., Székely, E., & Knutti, R. (2020). Climate change now detectable from any single day of weather at global scale. Nature Climate Change, 10, 35–41. https://doi.org/10.1038/s41558-019-0666-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reza Krisnandi, M. I. Ririk Winandari

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share— copy and redistribute the material in any medium or format
- Adapt— remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution— You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions— You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rightsmay limit how you use the material.


























