Peran Kecerdasan Buatan (AI) dalam Optimasi Strategi Pemasaran
DOI:
https://doi.org/10.38035/jim.v4i5.1481Keywords:
Artificial Intelligence, Strategi Pemasaran, Analisis Prediktif, Personalisasi, Etika DigitalAbstract
Kecerdasan buatan (Artificial Intelligence/AI) telah menjadi salah satu inovasi paling berpengaruh dalam revolusi digital dan memainkan peran penting dalam mengubah strategi pemasaran di berbagai sektor. Melalui kemampuan analisis data besar, pembelajaran mesin, dan pemrosesan bahasa alami, AI memungkinkan perusahaan memahami perilaku konsumen secara lebih mendalam, mengoptimalkan strategi pemasaran, serta meningkatkan efektivitas komunikasi merek. Penelitian ini bertujuan untuk menganalisis peran AI dalam optimasi strategi pemasaran melalui kajian literatur terhadap jurnal nasional dan internasional terbitan 2016–2024. Metode yang digunakan adalah literature review kualitatif dengan pendekatan meta-synthesis. Hasil penelitian menunjukkan bahwa penerapan AI memberikan manfaat signifikan, antara lain peningkatan efisiensi operasional, personalisasi pelanggan, dan analisis prediktif yang akurat. Namun, tantangan utama yang dihadapi adalah isu privasi data, bias algoritmik, dan kesiapan sumber daya manusia. Penelitian ini menegaskan bahwa AI bukan sekadar alat teknologi, melainkan sumber daya strategis yang dapat meningkatkan daya saing perusahaan apabila diimplementasikan secara etis dan berkelanjutan.
References
Akter, S., Dwivedi, Y. K., Sajib, S., Biswas, K., Bandara, R., & Michael, K. (2022). Algorithmic bias in machine learning-based marketing models. Journal of Business Research, 144, 201–216.
Arsyad, F., & Lestari, D. (2023). The impact of AI-based predictive analytics on digital marketing performance in Indonesian SMEs. Jurnal Manajemen Digital Indonesia, 4(2), 122–134.
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Dwivedi, Y. K., et al. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994.
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50.
Kietzmann, J. H., Paschen, J., & Treen, E. R. (2018). Artificial intelligence in advertising. Journal of Advertising Research, 58(3), 263–267.
Kumar, V., Dixit, A., Javalgi, R. G., Dass, M., & Sridhar, S. (2021). Marketing mix decisions: A review of machine learning applications. Journal of the Academy of Marketing Science, 49(4), 659–689.
Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business. Journal of Business Research, 129, 911–926.
Nair, A., Pillai, R., & Suresh, K. (2023). Predictive marketing analytics. Journal of Retailing and Consumer Services, 70, 103121.
Nunan, D., & Di Domenico, M. (2019). Research ethics in marketing: The ethical challenges of big data. Journal of Business Ethics, 152(1), 113–125.
Rana, N. P., Dwivedi, Y. K., Hughes, D. L., & Kizgin, H. (2022). The role of artificial intelligence in reshaping marketing strategies. Information Systems Frontiers, 24(2), 1–17.
Rust, R. T., & Huang, M.-H. (2021). Artificial intelligence in service. Journal of Service Research, 24(1), 3–10.
Sari, D. A., & Ramadhan, R. (2022). Personalisasi berbasis kecerdasan buatan dalam e-commerce Indonesia. Jurnal Teknologi dan Sistem Informasi Bisnis, 11(1), 77–89.
Susanti, R. (2023). Persepsi konsumen terhadap privasi data dalam pemasaran digital berbasis AI. Jurnal Komunikasi dan Pemasaran Digital, 7(2), 88–101.
Syaharuddin, N. F., Hidayanti, D., & Iswanto, D. (2023). Artificial intelligence in personalized marketing. Advance Sustainable Science Engineering & Technology, 5(2), 112–124.
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection. Journal of Business Research, 122, 889–901.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anita Rahmawati, Sri Isti Untari, Kristin Lukitaningrum

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share— copy and redistribute the material in any medium or format
- Adapt— remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution— You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions— You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rightsmay limit how you use the material.


























