E-ISSN: 2829-4580 P-ISSN: 2829-4599

□ greenation.info@gmail.com

DOI: https://doi.org/10.38035/jim.v4i4 https://creativecommons.org/licenses/by/4.0/

Analisis Pengaruh Aliran Kecepatan Udara Pada Gasifier Downdraft Berbahan Bakar Sekam Padi Menggunakan Simulasi Computational Fluid Dynamic (CFD)

Haydar Ali Alhadi Syamlan¹, Erlanda Augupta Pane², Rudi Hermawan³

¹Program Studi Teknik Mesin, Universitas Pancasila, Indonesia, haydarali.as20@gmail.com
²Program Studi Teknik Mesin, Universitas Pancasila, Indonesia, <a href="https://erichnik.org/erichni

Corresponding Author: haydarali.as20@gmail.com¹

Abstract: One of the waste biomass from the rice milling process that has not been utilized optimally until now is rice husk. This study was conducted to maximize the potential utilization of rice husk waste by using it as fuel in a downdraft gasification process, where the direction of the air flow is downward and produces flammable gas through the outlet below the reactor. The purpose of this study was to determine the effect of the inlet air flow velocity in the rice husk-fueled gasification process using Computational Fluid Dynamic (CFD) simulation. The air velocities varied were 0.05 m/s, 0.1 m/s, 0.5 m/s, and 1 m/s. The gasifier design was made based on calculations with 2.6 kW energy, SGR 110 kg/h-m 2, rice husk density 190 kg/m3, rice husk calorific value 14.48 MJ/kg, gasifier efficiency 0.6, equivalent ratio 0.2 and air-fuel ratio 4.57 kg air / 1 kg of rice husk. The rice husk inlet rate of 0.00029 kg/s and the air inlet rate of 0.83 m³ /h were obtained from these parameters. So that the reactor has the following dimensions: chamber diameter and fuel inlet of 139.79 mm, air inlet diameter of 17.1 mm, gas outlet diameter of 111.58 mm with a throat angle of 80°, total height of 449.4 mm, and volume of 567024.32 mm3 . The proximate and ultimate values are used to model rice husk in CFD along with its chemical reactions. The results of the analysis show that the inlet air flow velocity has a variety of effects on the temperature distribution, air flow in the reactor, chemical reactions, and combustible gas produced. In conclusion, the variation of the inlet air flow velocity of 0.5 m/s is the ideal condition for gasification in this study. Under these variation conditions, it is capable of producing carbon monoxide (CO) fuel gas of 7.257×10 -9 kg/s, hydrogen (H2) of 1.754 \times 10-21 kg/s, and methane (CH4) of 9.697 \times 10-3 kg/s.

Keyword: Air Flow, Computational Fluid Dynamic (CFD), Rice Husk

Abstrak: Salah satu biomassa limbah dari proses penggilingan padi yang belum dimanfaatkan secara maksimal sampai kini ialah sekam padi. Penelitian ini dilakukan untuk memaksimalkan potensi pemanfaatan limbah sekam padi dengan menggunakannya sebagai bahan bakar dalam proses gasifikasi tipe downdraft, dimana arah aliran udaranya ke bawah dan menghasilkan gas mampu bakar melalui outlet di bawah reaktor. Tujuan penelitian ini adalah untuk mengetahui pengaruh kecepatan aliran udara masuk dalam proses gasifikasi berbahan bakar sekam padi menggunakan simulasi Computational Fluid Dynamic (CFD). Kecepatan udara yang

divariasikan adalah 0,05 m/s, 0,1 m/s, 0,5 m/s, dan 1 m/s. Desain gasifier dibuat berdasarkan perhitungan dengan energi 2,6 kW, SGR 110 kg/h-m2 , massa jenis sekam padi 190 kg/m3 , nilai kalor sekam padi 14,48 MJ/kg, efisiensi gasifier 0,6, rasio ekuivalen 0,2 dan rasio udarabahan bakar 4,57 kg udara / 1 kg sekam. Nilai laju pemasukan sekam padi 0,00029 kg/s dan nilai laju udara masuk 0,83 m3 /h didapat dari parameter tersebut. Sehingga reaktor memiliki dimensi sebagai berikut: diameter ruang dan masukan bahan bakar 139,79 mm, diameter saluran udara masuk 17,1 mm, diameter keluaran gas 111,58 mm dengan sudut throat 80°, tinggi total 449,4 mm, dan volume 567024,32 mm3 . Nilai proksimat dan ultimat difungsikan untuk memodelkan sekam padi pada CFD serta reaksi kimianya. Hasil dari analisis menunjukan bahwa kecepatan aliran udara masuk memiliki pengaruh yang beragam terhadap distribusi temperatur, aliran udara dalam reaktor, reaksi kimia, dan gas mampu bakar yang dihasilkan. Kesimpulannya, variasi kecepatan aliran udara masuk 0,5 m/s adalah kondisi yang ideal untuk gasifikasi pada penilitian ini. Pada kondisi variasi ini, mampu menghasilkan gas mampu bahan bakar karbon monoksida (CO) sebesar 7,257 × 10-9 kg/s, hidrogen (H2) sebesar 1,754 × 10-21 kg/s, dan metana (CH4) sebesar 9,697 × 10-3 kg/s.

Kata Kunci: Aliran Udara, Computational Fluid Dynamic (CFD), Sekam Padi

PENDAHULUAN

Isu Sustainable Development Goals (SDGs) atau pembangunan berkelanjutan akhirakhir ini menjadi isu yang banyak diperbincangkan oleh negara-negara di dunia. Dari 17 tujuan pembangunan salah satunya ialah energi bersih dan terjangkau. Untuk mencapai tujuan energi bersih peralihan penggunaan sumber energi tak terbarukan ke energi baru dan terbarukan (EBT) harus segera dilaksanakan di berbagai sektor dikarenakan energi tak terbarukan ikut bertanggung jawab terkait isu pemanasan global karena energi tak terbarukan melepas senyawa tertentu ke atmosfer yang jika terlalu banyak akan berbahaya bagi lingkungan. Salah satu potensi EBT ialah biomassa yang merupakan energi terbarukan yang berasal dari tanaman ataupun hewan yang mengandung simpanan energi kimia dari matahari yang dihasilkan tanaman melalui fotosintesis. Modernisasi sistem bioenergi diantisipasi bisa berperan krusial dalam pengembangan energi berkelanjutan di masa depan, terutama di sejumlah negara industri ataupun negara berkembang, ketika biomassa berpotensi dijadikan salah satu sumber energi utama.

Di Indonesia, biomassa tersedia dalam jumlah yang melimpah. Sekam padi termasuk salah satu biomassa yang potensial. Limbah hasil pertanian dari proses penggilingan padi yang belum dimanfaatkan secara maksimal sampai kini disebut sekam padi. Potensi energi yang dihasilkan dari pemanfaatan sekam padi ialah 27×109 J/tahun, menurut data dari The Potential of Biomass Residues as Energy Sources in Indonesia. Salah satu tanaman yang tersedia secara luas hampir di seluruh Indonesia, khususnya di Pulau Jawa, ialah padi. Pada tahun 2010 diperkirakan angka produksi padi mencapai 65,98 juta ton yang menghasilkan 13,12 juta ton sekam padi. Sekam padi yang tidak dimanfaatkan dengan baik dapat berdampak negatif pada lingkungan dalam berbagai cara, seperti seringnya membuang sekam padi dengan pembakaran secara langsung menghasilkan asap yang mengandung zat berbahaya seperti CO2 dan CO sehingga mencemari udara. Selain itu, sekam padi yang dibiarkan membusuk dan menumpuk di tanah dapat menimbulkan pencemaran yang menganggu unsur hara di tanah karena pelepasan senyawa beracun seperti, dan juga dapat mempengaruhi kualitas air di sekitar lahan pertanian, serta sekam padi yang dibiarkan membusuk di tempat yang lembab juga akan menghasilkan gas metana, gas rumah kaca yang dapat memperburuk pemanasan global.

Sejumlah 13 juta ton sekam padi diproduksi tiap tahunnya ataupun setara dengan 16.500 unit PLTD berkapasitas 100 kW, tetapi diperkirakan hanya sebagian kecil saja yang dimanfaatkan yaitu sekitar 10-20% saja, dan sisanya sering kali terbuang atau dibakar.

Sebagian besar pemanfaatan sekam padi diterapkan untuk bahan bakar industri kecil, campuran pakan ternak, serta bahan pembuat pupuk organik atau kompos. Penelitian ini dilakukan untuk memaksimalkan potensi pemanfaatan limbah sekam padi dengan menggunakannya selaku bahan bakar dalam proses gasifikasi.

Salah satu proses termokimia guna mengubah padatan menjadi gas yang mudah terbakar ialah gasifikasi biomassa. Keputusan untuk menerapkan metodologi gasifikasi dibuat sebab menghadirkan banyak keuntungan, termasuk dijadikan pembangkit listrik, memproses masukan bahan bakar, mengubah limbah menjadi produk yang bermanfaat, serta ramah lingkungan. Aliran gasifikasi diklasifikasikan ke 3 jenis menurut arahnya, yakni crossdraft, updraft, serta downdraft. Gasifikasi jenis downdraft yang mengalirkan udara ke bawah menuju zona gasifikasi panas hendak diterapkan dalam penelitian ini. Keunggulan gasifikasi jenis ini yakni bisa beroperasi secara kontinyu dikarenakan bahan bakar bisa diinjeksikan melalui bagian atas reaktor, kemudian gas yang dihasilkan lebih bersih sebab tar dalam asap akan terbakar. Laju aliran udara termasuk salah satu faktor yang mempengaruhi proses gasifikasi; semakin tinggi laju aliran udara, semakin cepat konsumsi bahan bakar dan semakin pendek durasi proses.

Penelitian ini bertujuan untuk mengetahui pengaruh kecepatan udara dalam proses gasifikasi biomassa pada downdraft gasifier dengan bahan bakar sekam padi menggunakan simulasi Computational Fluid Dynamic (CFD).

Gasifikasi

Proses gasifikasi melibatkan pembakaran bahan bakar padat disertai pasokan udara terbatas (20–40% udara stoikiometri) guna menghasilkan gas yang mudah terbakar. Gasifier ialah reaktor tempat berlangsungnya proses gasifikasi. Proses gasifikasi mencakup berbagai tahap antara lain pengeringan bahan baku basah, pirolisis bahan baku yang sudah dikeringkan, dan bagian reaksi termasuk oksidasi, reduksi, dan pemecahan (cracking). Gas produk dari gasifikasi biomassa terutama mencakup karbon monoksida, karbon dioksida, metana, dan hidrogen yang dapat digunakan untuk produksi panas termal, tenaga listrik atau hidrogen.

Biomasa

Tak seluruh biomassa cocok untuk digasifikasi menjadi syngas yang mudah terbakar. Terdapat sejumlah parameter yang menetapkan apakah biomassa cocok untuk diubah menjadi syngas yang mudah terbakar, yakni mencakup :

- a) Kandungan energi : Kandungan energi biomassa bervariasi. Energi produk syngas bisa dipengaruhi oleh energi biomassa. Energi produk gas yang dihasilkan meningkat seiring dengan kandungan energi biomassa.
- b) Kadar air : Kandungan air dalam bahan biomassa bervariasi tergantung pada jenis biomassa, meskipun pengeringan bisa menurunkan kandungan air untuk pengkondisian. Kandungan air biomassa bisa mengganggu proses gasifikasi. Kandungan air bisa menurunkan energi panas gasifier dikarenakan air harus menguap dari biomassa. Kandungan air biomassa pun memengaruhi produk syngas dikarenakan uap air, atau H2O, akan bereaksi dengan produk gas. Dalam gasifikasi, biomassa biasanya harus mempunyai kandungan air < 20%.
- c) Abu: Debu termasuk hasil dari seluruh proses pembakaran biomassa. Debu haruslah dikeluarkan dari gasifier secara berkala dikarenakan debu bisa menyumbat gasifying agent ataupun gas yang mudah terbakar yang keluar dari gasifier. Proses gasifikasi haruslah dihentikan tiap kali debu dikeluarkan dari gasifier sehingga proses tersebut tak akan efektif ketika debu haruslah dikeluarkan untuk sementara waktu selama proses berlangsung.
- d) Tar: Tar ialah cairan hitam kental yang mencakup campuran karbon bebas serta hidrokarbon dari pembakaran biomassa. Tar bisa menyumbat jalur gas selama proses

gasifikasi. Tar bisa merusak ruang pembakaran ketika syngas dengan banyak tar dimanfaatkan selaku bahan bakar untuk motor bensin dikarenakan sifat tar ialah korosif.

METODE

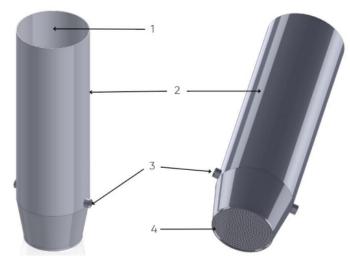
Identifikasi Masalah

Identifikasi Masalah Pada tahapan ini ditentukan rumusan permasalahan dan tujuan, identifikasi akan dilakukan pada distribusi temperatur dan hasil syngas yang didapat dengan variasi kecepatan udara masuk pada gasifier downdraft. Data yang di kumpulkan dan yang akan diolah ialah nilai temperatur, kecepatan aliran udara, dan hasil syngas dari proses gasifikasi melalui simulasi CFD pada software Ansys yang telah di atur untuk gasifier downdraft dengan nilai proksimate dan ultimate yang sudah di sesuaikan untuk bahan bakar sekam padi.

Desain Gasifier

Dalam proses pembakaran bahan biomassa, dibutuhkannya ruang pembakaran biomassa atau bisa disebut Reaktor. Material yang akan digunakan dalam pembuatan reaktor gasifikasi ini menggunakan stainless steel 304. Alasan penggunaan material ini dikarenakan sifatnya tidak mudah terkorosi sebagaimana logam baja yang lain. Baja ini memiliki komposisi 0,042% C; 1,19% Mn; 0,034% P; 0,006% S; 0,049% Si; 18,24% Cr; 8,15% Ni; dan sisanya Fe.

Adapun bagian-bagian dari reaktor gasifikasi ini adalah inlet udara, *outlet, fuel inlet*, dan ruang bakar. Inlet adalah bagian di dalam ruang pembakaran yang berfungsi sebagai masuknya udara ke dalam ruang pembakaran. Outlet adalah bagian dimana hasil dari pembakaran berupa syngas keluar melalui lubang ini dan menyalurkannya ke komponen lainnya. Fuel inlet adalah tempat dimana bahan bakar dimasukan, dan yang terakhir adalah ruang pembakaran, dimana itu berfungsi sebagai tempat terjadi proses gasifikasi. Ruang pembakaran ini menggunakan tipe downdraft dikarenakan prosesnya yang mudah, murah, membutuhkan kadar air yang rendah, dan menghasilkan sedikit tar dibanding dengan tipe lainnya.

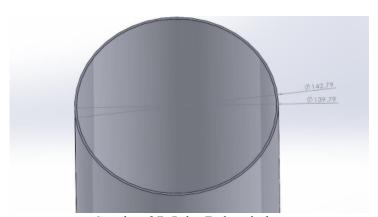

Sebagai dasar perhitungan, penulis mengambil referensi dari salah satu jurnal penelitian tentang eksperimen gasifikasi downdraft pada sekam padi, dimana rancangan ruang pembakaran gasifikasi downdraft ini akan menghasilkan energi 2,6 kW, dengan nilai Spesification Gasification Rate (SGR) 110 kg/h-m², dan juga memiliki efisiensi gasifikasi 0,6. Untuk massa jenis udara, nilai kalor dan massa jenis sekam padi 35 secara berurutan adalah 1,161 kg/m³, 14,48 MJ/kg dan 190 kg/m³.

Selain itu, desain rancangan gasifier ini juga akan dibuat dengan model throat pada bagian outlet gas hasil pembakarannya. Karena berdasarkan hasil penelitian terdahulu, bahwa sudut throat pada reaktor gasifikasi tipe downdraft dapat memberikan pengaruh terhadap efisiensi gasifikasi. Adapun kesimpulan sudut throat terbaik berdasarkan hasil penelitian tersebut adalah pada sudut throat 80°.

HASIL DAN PEMBAHASAN

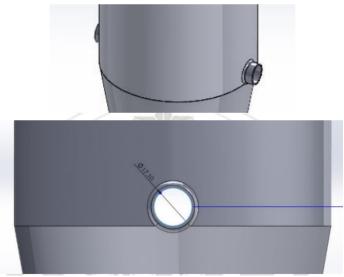
Bagian-Bagian dalam Desain Gasifier Downdraft

Desain reaktor ruang pembakaran dibagi menjadi beberapa bagian. Bagian – bagian yang dimaksud adalah sebagai berikut:

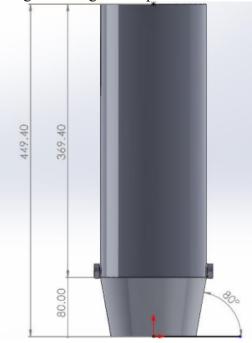


Gambar 26. Desain 3D Gasifier

Keterangan:


No 1 : Inlet bahan bakar No 2 : Dinding Gasifier

No 3 : Inlet udara No 4 : Outlet Gas


Gambar 27. Inlet Bahan bakar

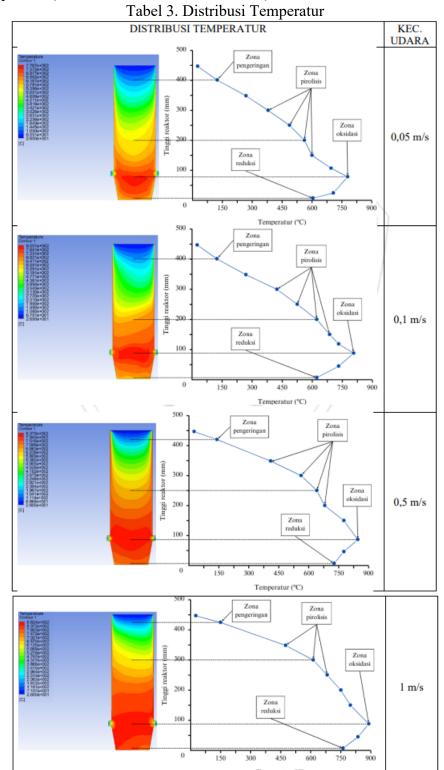
Pada Gambar 2 ditunjukkan inlet bahan bakar, adapun inlet dari gasifier ini memiliki ukuran diameter sebesar 139,79 mm dengan ketebalan plat 1,5 mm sehingga total diameter sebesar 142,79 mm. Inlet bahan bakar ini memiliki fungsi sebagai masukkan dari bahan bakarnya. Adapun bahan bakar yang akan dimasukkan dalam penelitian ini adalah sekam padi.

Gambar 28. Inlet udara

Pada Gambar 28 menunjukkan inlet udara yang memiliki ukuran diameter sebesar 17,1 mm. Inlet udara ini berfungsi untuk menyalurkan udara ke dalam ruang pembakaran untuk proses gasifikasi sehingga menghasilkan gas mampu bakar.

Gambar 29. Dinding Gasifier

Gambar 29 menunjukkan dinding gasifier yang di dalamnya adalah ruang pembakaran gasifikasi. Ruang pembakaran pada gasifier berfungsi sebagai tempat gasifikasi berlangsung. Ruang pembakaran ini memiliki tinggi keseluruhan dari ujung hopper sampai akhir outlet sebesar 449,39 mm, dengan sudut throat sebesar 80°.

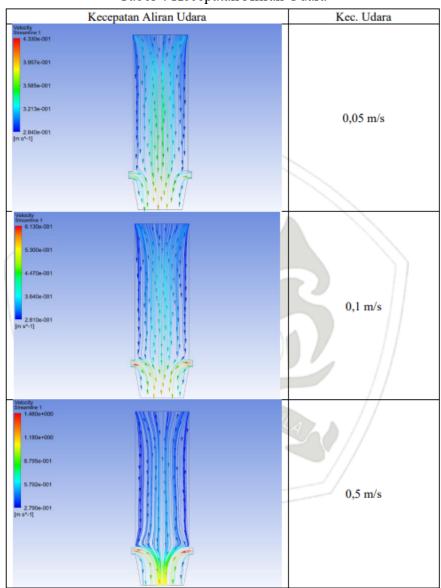

Gambar 30. Outlet gas

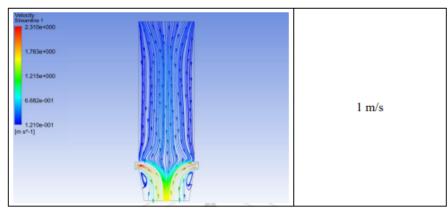
Gambar 30 adalah outlet gas sebagai keluaran hasil gasifikasi berupa gas mampu bakar (syngas). Diameter outlet ini sebesar 111,58 mm, dan memiliki grater untuk menampung masukan sekam padi yang sedang dalam proses gasifikasi. Sehingga yang akan melewati grater ini adalah gas hasil gasifikasi. Ukuran lubang pada grater ini sebesar 3 mm.

Hasil Simulasi

Hasil dari simulasi yang sudah dijalankan adalah sebagai berikut:

a. Temperatur (0.05 m/s, 0.1 m/s, 0.5 m/s, 1 m/s)

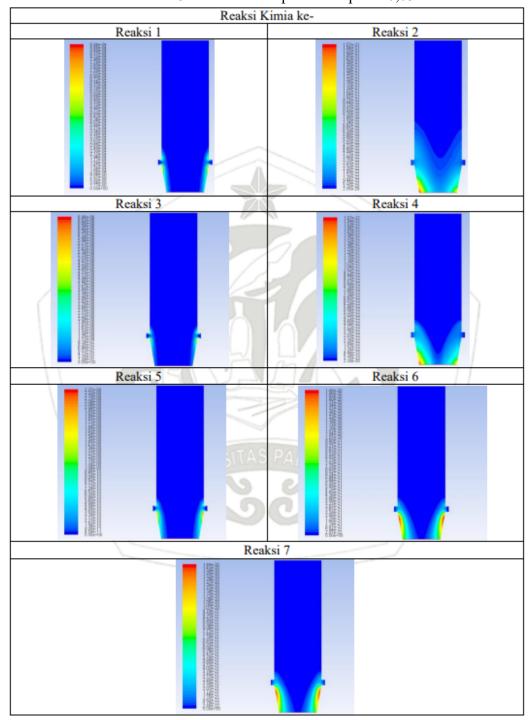

Berdasarkan Tabel 3 dapat dijelaskan bahwa beberapa variasi kecepatan udara masuk memiliki perbedaan terhadap hasil dari distribusi temperatur yang terjadi di dalam reaktor. Adapun dalam gasifikasi downdraft dibagi menjadi beberapa zona, zona pengeringan (100 < T < 150°C), zona pirolisis (250 < T < 700°C), zona oksidasi (800 < T < 1100°C), dan zona reduksi (500 < T < 800°C). Dari hasil simulasi, dapat dikatakan bahwa semakin cepat udara yang


masuk melalui lubang udara, semakin besar temperatur pembakaran gasifikasi tersebut. Hal ini juga akan mempengaruhi zona proses gasifikasi yang terjadi di dalam reaktor. Dimana semakin cepat udara yang masuk melalui lubang udara, pengeringan dan pirolisis akan terjadi di area yang semakin atas.

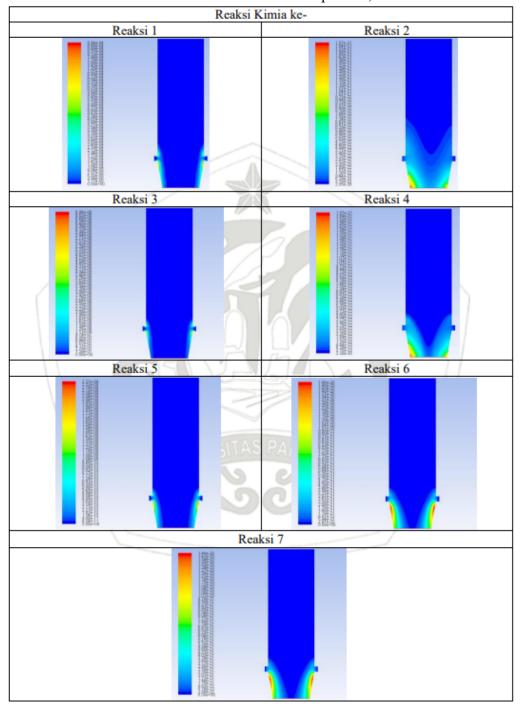
Pada kondisi dengan kecepatan aliran udara masuk 0,05 m/s dan 0,1 m/s, proses pengeringan yang terjadi di ketinggian reaktor 400 mm memiliki suhu sebesar 120°C. Sementara area pirolisis yang terjadi di ketinggian reaktor 300 mm sampai 150 mm memiliki suhu sekitar 340 - 600°C pada variasi 0,05 m/s dan 350 - 650°C pada variasi 0,1 m/s. Proses oksidasi atau pembakaran yang terjadi di sekitar ketinggian reaktor 90 mm memiliki suhu maksimum 776°C dan 805°C. Sementara untuk keluaran gas di area reduksi memiliki suhu sebesar 610°C dan 625°C.

Pada variasi kecepatan aliran udara masuk 0,5 m/s dan 1 m/s, proses pengeringan yang terjadi di ketinggian reaktor 420 mm memiliki suhu sebesar 150°C. Sementara area pirolisis yang terjadi di ketinggian reaktor 350 - 200 mm memiliki suhu sekitar 412 - 675°C di variasi 0,5 m/s, dan di ketinggian reaktor 350 – 200 mm memiliki suhu 430 - 680°C pada variasi 1 m/s. Proses oksidasi yang terjadi di sekitar ketinggian reaktor 90 mm memiliki suhu maksimum 837°C dan 882°C. Sementara untuk keluaran gas di area reduksi memiliki suhu sebesar 715°C dan 760°C.

b. Kecepatan Pembakaran (0,05 m/s, 0,1 m/s, 0,5 m/s, 1 m/s) Tabel 4 Kecepatan Aliran Udara

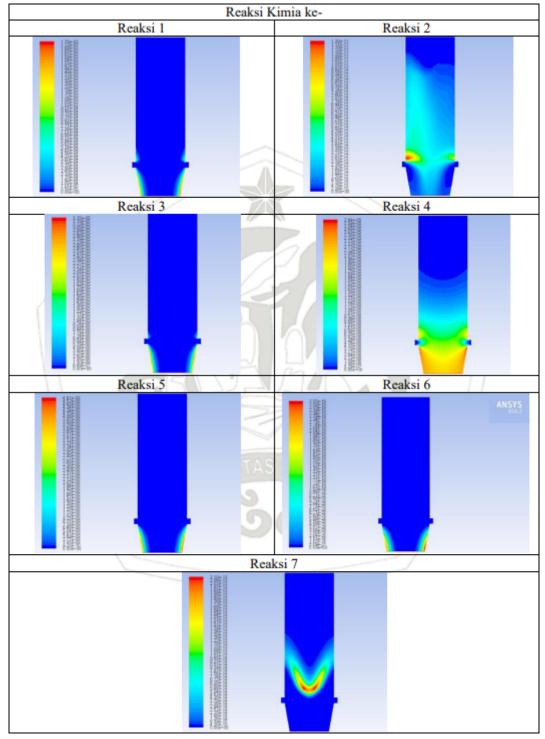


Pada Tabel 4 dapat dijelaskan bahwa kondisi aliran udara pada proses pembakaran di gasifier membentuk hasil yang beragam dari area tengah gasifier sampai ke outlet. Dengan aliran udara inlet yang dapat membantu mempertahankan kondisi suhu gas mampu bakar yang dihasilkan dari proses pembakaran. Adapun beberapa senyawa kimia yang merupakan gas mampu bakar yang dapat dihasilkan dalam proses gasifikasi ini adalah senyawa gas karbon monoksida (CO), gas hidrogen (H2), dan gas metana (CH4). Pada kondisi dengan variasi kecepatan udara masuk 0,01 m/s, memiliki pola aliran udara yang lebih lebar di tengah gasifier sampai ke outlet gas. Sementara itu, pada kondisi dengan variasi kecepatan udara masuk 0,1 m/s, 0,5 m/s, dan 1 m/s memiliki pola aliran udara yang lebih mengecil dan memusat di depan lubang udara inlet.

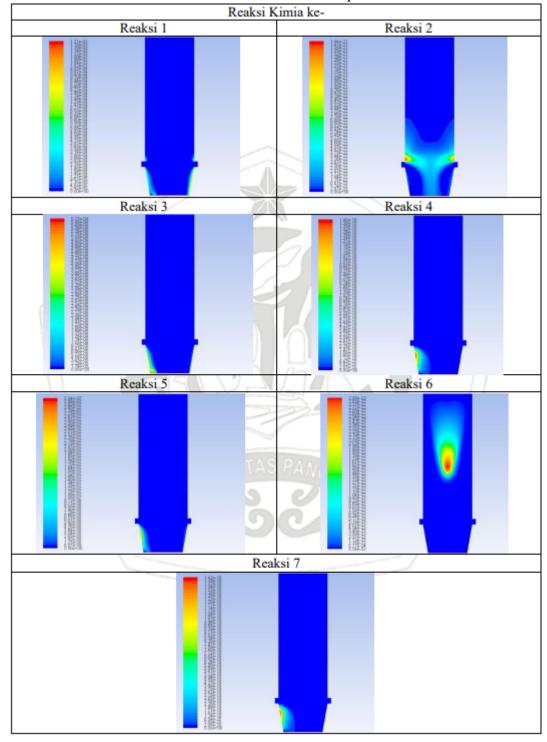

Dari hasil tersebut dapat dikatakan bahwa semakin besar kecepatan udara yang masuk ke ruang pembakaran, maka semakin terpusat di tengah arah aliran udaranya. Ketika aliran udara saling bertabrakan dengan kecepatan yang tinggi, momentum dari kedua aliran saling berinteraksi. Hal itu membuat aliran udara di atasnya akan terhambat karena adanya tekanan dan turbulensi yang timbul dari hasil tabrakan udara tersebut. Karena itu pada penelitian ini, kondisi dengan variasi kecepatan udara masuk tertinggi yaitu 1 m/s, didapatkan hasil aliran udara dari arah pemasukan bahan bakar lebih lambat dibanding kondisi variasi kecepatan udara masuk lainnya yang lebih kecil.

Idealnya, zona tabrakan ini cukup menguntungkan untuk pembakaran yang terjadi di dalam ruang gasifier karena dapat menciptakan pencampuran yang optimal antara udara dengan biomassa untuk mendukung reaksi kimia gasifikasi. Namun jika udara masuk terlalu cepat, reaksi kimia yang terjadi akan tidak optimal karena aliran dari atas terlalu terhambat, serta pembakaran akan terlalu kaya akan oksigen (air-rich). Sehingga, akan berdampak pada komposisi gas mampu bakar yang dihasilkan.

c. Reaksi Kimia pada Kecepatan 0,05 m/s Tabel 5 Reaksi Kimia pada Kecepatan 0,05 m/s



d. Reaksi Kimia Pada kecepatan 0,1 m.s Tabel 6 Reaksi Kimia Pada kecepatan 0,1 m/s


e. Reaksi Kimia Kecepatan 0,5 m/s

Tabel 7. Reaksi Kimia pada Kecepatan 0,5 m/s

f. Reaksi Kimia Pada Kecepatan 1 ,/s

Tabel 8. Reaksi Kimia Pada Kecepatan 1 m/s

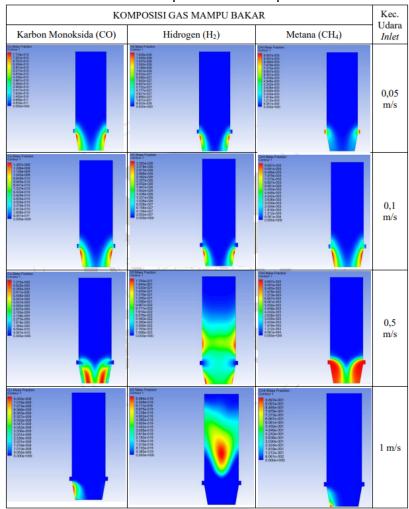
Pada Tabel 5, Tabel 6, Tabel 7, dan Tabel 8 dapat dijelaskan bahwa reaksi 1 adalah reaksi pirolisis yang dilakukan untuk penguraian bahan bakar sekam padi menjadi karbon, tar dan sedikit gas mampu bakar (CO, H2, CO2, dan CH4). Reaksi 2 dan reaksi 4 adalah reaksi untuk menghasilkan gas mampu bakar jenis karbonmonoksida (CO), reaksi 3 adalah reaksi yang dilakukan untuk menghasilkan gas mampu bakar metana (CH4), dan reaksi 6 adalah reaksi yang dilakukan untuk menghasilkan gas mampu bakar hidrogen (H2). Reaksi 5 adalah reaksi yang dilakukan untuk menghasilkan gas karbondioksida (CO2) dan reaksi 7 adalah reaksi yang dilakukan untuk menghasilkan gas H2O.

Pada proses gasifikasi dengan kecepatan udara inlet 0,05 m/s, reaksi 1, 3, dan 5 terjadi di sekitar dinding gasifier dekat dengan lubang inlet udara yang akan membentuk gas berupa CH4 dan CO2. Sedangkan, pada reaksi 2 dan 4 terjadi di bawah area outlet yang menghasilkan gas CO. Sementara itu, pada reaksi 6 dan 7 terjadi di area dinding di bawah lubang inlet udara yang menghasilan gas CO2, H2 dan H2O.

Pada proses gasifikasi dengan kecepatan udara inlet 0,1 m/s, reaksi 1 terjadi di sekitar dinding gasifier dekat dengan lubang inlet udara sebagai dekomposisi bahan bakar sekam padi. Sementara itu, pada reaksi 4 terjadi di area tengah antar lubang inlet udara, menghasilkan gas mampu bakar berupa CO. Selanjutnya pada reaksi 2, 3, 5, 6, dan 7 terjadi di sekitar outlet pada dinding di bawah lubang inlet untuk membentuk gas berupa CO, CH4, CO2, dan H2.

Pada proses gasifikasi dengan kecepatan udara inlet 0,5 m/s, reaksi 1 terjadi di sekitar dinding gasifier dekat dengan lubang inlet udara sebagai dekomposisi bahan bakar sekam padi. Sementara itu, pada reaksi 3, 5, dan 6 juga terjadi di area sekitar dinding gasiifer dekat lubang inlet udara yang menghasilkan gas mampu bakar berupa CH4, CO dan H2. Selanjutnya, reaksi 2 dan 4 terjadi cukup menyebar di area tengah gasifier namun reaksi 2 berpusat di sekitar atas lubang inlet udara, menghasilkan gas CO. Sedangkan reaksi 4 berpusat di bawah sekitar outlet menghasilkan gas CO dan H2O. Selain itu, reaksi 7 terjadi di tengah gasifier menghasilkan gas H2O.

Pada proses gasifikasi dengan kecepatan udara inlet 1 m/s, dekomposisi pada reaksi 1 terjadi di sekitar dinding dekat lubang inlet udara. Pada reaksi 3, 4, 5, dan 7, terjadi di area sekitar dinding di bawah lubang inlet pada bagian outlet, menghasilkan sedikit gas CH4, CO, CO2, dan H2O. Reaksi 2 terjadi di atas masing-masing lubang inlet, membentuk sediit gas CO. Sedangkan, pada reaksi 6 terjadi di tengah-tengah ruang gasifier, sehingga gas H2 yang terbentuk langsung habis tidak mencapai outlet.


g. Mass flow rate dan Heat transfer rate Tabel 9 Mass flow rate dan Heat transfer rate

PARAMETER	KUANTITAS	KECEPATAN UDARA
Net Mass Flow Rate Total Heat Transfer Rate	0,00020486 kg/s 12372 Watt	0,05 m/s
Net Mass Flow Rate Total Heat Transfer Rate	0,00023515 kg/s 15845 Watt	0,1 m/s
Net Mass Flow Rate Total Heat Transfer Rate	0,00044391 kg/s 24219 Watt	0,5 m/s
Net Mass Flow Rate Total Heat Transfer Rate	0,00071014 kg/s 28892 Watt	1 m/s

Pada Tabel 9 dapat dijelaskan bahwa kondisi aliran massa bahan bakar (net mass flow rate) pada proses gasifikasi bahan bakar sekam padi di dalam ruang bakar. Pada variasi kecepatan udara masuk 0,05 m/s, menghasilkan sisa bahan bakar sebesar 0,00020486 kg/s dan menghasilkan total heat transfer rate sebesar 12372 watt. Untuk variasi kecepatan udara 0,1 m/s, menghasilkan sisa bahan bakar sebesar 0,00023515 kg/s dan total heat transfer rate sebesar 15845 watt. Pada variasi kecepatan udara 0,5 m/s, menghasilkan sisa bahan bakar sebesar 0,00044391 kg/s dan total heat transfer rate sebesar 24219 watt. Dan pada variasi kecepatan udara masuk 1 m/s, menghasilkan sisa bahan bakar sebesar 0,00071014 kg/s dan menghasilkan total heat transfer rate sebesar 28892 watt.

Selain dari komposisi bahan bakar sekam padi, kecepatan aliran udara yang terjadi selama pembakaran di ruang bakar juga menjadi faktor yang mempengaruhi hasil keluaran sisa gas bahan bakar.

h. Komposisi Gas Mampu Bakar (Syngas) Tabel 10 Komposisi Gas Mampu Bakar

Pada Tabel 10 dapat dijelaskan bahwa komposisi gas mampu bakar yang dihasilkan dari proses pembakaran dengan kecepatan udara inlet 0,05 m/s adalah sebagai berikut, untuk komposisi aliran gas mampu bakar karbon monoksida (CO) sebesar 4,834 \times 10-10 kg/s, aliran gas mampu bakar hidrogen (H2) sebesar 6,687 \times 10-27 kg/s, aliran gas mampu bakar metana (CH4) sebesar 1,818 \times 10-3 kg/s.

Untuk proses pembakaran dengan kecepatan udara inlet 0,1 m/s menghasilkan gas mampu bakar sebagai berikut, komposisi aliran gas mampu bakar karbon monoksida (CO) sebesar 1,045 \times 10-9 kg/s, aliran gas mampu bakar hidrogen (H2) sebesar 2,052 \times 10-26 kg/s, aliran gas mampu bakar metana (CH4) sebesar 8,485 \times 10-3 kg/s.

Pada proses pembakaran dengan kecepatan udara inlet 0,5 m/s mampu menghasilkan gas mampu bakar karbon monoksida (CO) sebesar $7,257 \times 10-9$ kg/s, aliran gas mampu bakar hidrogen (H2) sebesar $1,754 \times 10-21$ kg/s, aliran gas mampu bakar metana (CH4) sebesar $9,697 \times 10-3$ kg/s.

Sementara itu, pada proses pembakaran dengan kecepatan udara inlet 1 m/s dapat menghasilkan gas mampu bakar karbon monoksida (CO) sebesar 2,526 \times 10-8 kg/s, aliran gas mampu bakar hidrogen (H₂) sebesar 6,984 \times 10⁻¹⁸ kg/s tetapi hanya di area tengah reaktor

gasifikasi dan habis terbakar sehingga tidak mencapai ke outlet gas. Terakhir, aliran gas mampu bakar metana (CH₄) dapat dihasilkan sebesar 9.697×10^{-1} kg/s.

KESIMPULAN

Berdasarkan penelitian yang sudah dilakukan, dapat disimpulkan bahwa:

1. Sebelum membuat desain gasifier downdraft dalam software CAD, pertama perlu diketahui dan dirumuskan terlebih dahulu beberapa parameternya untuk dapat memperhitungkan desain yang akan dibuat, seperti energi yang akan dihasilkan oleh gasifier, efisiensi gasifikasi, perbandingan udara-bahan bakar, nilai ER, dan nilai dari komposisi bahan bakar yang akan digunakan (dalam penelitian ini adalah sekam padi), seperti nilai SGR, massa jenis, nilai kalor, dan nilai uji proximate dan ultimate.

Setelah itu, baru dapat ditemukan variabel lain seperti laju pemasukan bahan bakar (FCR), dan laju volumetrik pemasukan udara. Selanjutnya, dapat dirumuskan untuk dimensi dari desain yang akan dibuat, dimulai dari outlet reaktor, saluran udara masuk, dan ruang bahan bakar.

Setelah didapat ukuran dimensinya, buat Geometry pada software CAD, dalam penelitian ini digunakan software Solidworks 2022, tahapan-tahapannya adalah sebagai berikut :

- 1) Buka aplikasi Solidworks
- 2) Buat sketsa pada menu Sketch > front plane, sesuaikan desain dan ukuran sesuai yang sudah didapat dari hasil perhitungan
- 3) Setelah selesai, gunakan fungsi planar surface untuk membuat permukaan solid sehingga dapat dijalankan pada software CFD untuk dianalisa
- 4) Simpan file dengan format file STEP
- 2. Dalam menganalisis pengaruh aliran kecepatan udara dalam gasifier downdraft pada software CFD, tahapan-tahapannya adalah sebagai berikut :
 - 1) Buka aplikasi Ansys
 - 2) Masukan geometry pada dengan meng-impor file yang sudah disimpan pada tahap pembuatan desain (format STEP)
 - 3) Lakukan meshing pada gambar yang sudah dimasukan pada menu Mesh
 - 4) Beri nama setiap bagian : mass inlet, velocity inlet dan outlet
 - 5) Masuk ke menu Setup, tahap ini untuk memasukan data-data untuk memulai proses gasifikasi. Data yang dimasukkan:
 - a. Nilai gravitasi: 9,81 m/s²
 - b. Aktivasi Energy Equation
 - c. Aktivasi k-epsilon (2 eqn)
 - d. Aktivasi Species transport > Finite-Rate/Eddy-Dissipation
 - e. Nilai proximate, ultimate dan nilai kalor bahan bakar sekam padi
 - f. Material campuran senyawa gas : metana, karbondioksida, hidrogen, karbon monoksida, nitrogen, dan karbon
 - g. Reaksi kimia gasifikasi
 - 6) Masukan data boundary condition
 - a. Mass flow inlet: 0,00029 kg/s
 - b. Velocity inlet: (0.05 m/s, 0.1 m/s, 0.5 m/s) dan 1 m/s
 - 7) Lakukan inisialisasi untuk persiapan memulai kalkulasi, pilih Hybrid Initialization
 - 8) Masukan iterasi yang diperlukan, lalu jalankan kalkulasi dan tunggu hingga kalkulasi menunjukan nilai konvergen

- 9) Setelah selesai, ubah variasi velocity inlet udara lalu jalankan kalkulasi kembali hingga nilai konvergen
- 10) Ambil dan catat hasil dari masing-masing variasi nilai kecepatan aliran udara. Ambil beberapa data seperti :
 - a. Temperatur
 - b. Kecepatan pembakaran
 - c. Reaksi kimia
 - d. Senyawa gas mampu bakar (syngas) : Hidrogen (H₂), Karbon Monoksida (CO), dan Metana (CH₄)

Pada penelitian ini dapat diambil kesimpulan, kecepatan aliran udara yang masuk dalam gasifier downdraft mempengaruhi beberapa variabel, seperti temperatur, kecepatan pembakaran, reaksi kimia dan komposisi gas mampu bakar. Semakin besar aliran udara yang masuk ke reaktor, maka temperatur maksimum nya juga akan cenderung lebih tinggi. Tetapi, kecepatan aliran udara masuk yang terlalu tinggi juga tidak baik, karena akan menyebabkan kondisi di ruang bakar kaya akan udara (airrich). Dengan begitu, mengakibatkan reaksi kimia pada proses gasifikasi tidak optimal sehingga kandungan senyawa gas mampu bakar yang dihasilkan juga kurang optimal.

Hasil penilitian ini juga dapat disimpulkan kecepatan aliran udara yang ideal pada gasifier downdraft berbahan bakar sekam padi ini, yaitu 0,5 m/s. Pada kecepatan aliran udara masuk 0,5 m/s, mampu menghasilkan gas mampu bakar karbon monoksida (CO) sebesar 7,257 \times 10⁻⁹ kg/s, hidrogen (H₂) sebesar 1,754 \times 10⁻²¹ kg/s, dan metana (CH₄) sebesar 9,697 \times 10⁻³ kg/s.

REFERENSI

- A. Permana, "Inovasi Gasifikasi Biomassa untuk Listrik Daerah Terpencil di Indonesia," Institut Teknologi Bandung Web. Accessed: Jul. 10, 2023. [Online]. Available: https://www.itb.ac.id/berita/detail/58647/inovasi-gasifikasi-biomassauntuk-listrik-daerah-terpencil-di-indonesia
- B. Hartono, "Pengaruh Laju Alir Udara Dan Kadar Air Biomassa Terhadap Proses Gasifikasi Menggunakan Downdraft Gasifier," Semarang, 2019. [Online]. Available: http://lib.unnes.ac.id/id/eprint/35571
- D. E. G. Sofhia, W. Nurhasanah, and J. M. Munandar, "Pemanfaatan Limbah Sekam Menjadi Produk Arang Sekam untuk Meningkatkan Nilai Jual di Desa Gunturmekar, Kabupaten Sumedang Waste Utilization As Husk Charcoal Product To Increase Selling Value In Gunturmekar Village, Sumedang Districts," J. Pus. Inov. Masy. Juni, vol. 2, no. 4, pp. 679–684, 2020.
- D. R. Ependi, "Studi Eksperimental Dan Numerik Pengaruh Temperatur Udara Inlet Proses Gasifikasi Pelet Msw Terhadap Performansi Multistage Downdraft Gasifier," Institut Teknologi Sepuluh November, 2019. [Online]. Available: http://repository.its.ac.id/id/eprint/61237
- E. Suhendi, G. U. Paradise, and I. Priandana, "Pengaruh Laju Alir Udara Dan Waktu Proses Gasifikasi Terhadap Gas Producer Limbah Tangkai Daun Tembakau Menggunakan Gasifier Tipe Downdraft," J. Bahan Alam Terbarukan, vol. 5, no. 2, pp. 45–53, 2016, doi: https://doi.org/10.15294/jbat.v5i2.6054
- F. Vidian, "Gasifikasi Tempurung Kelapa Menggunakan Updraft Gasifier pada Beberapa Variasi Laju Alir Udara Pembakaran," J. Tek. Mesin, vol. 10, no. 02, pp. 88–93, 2008, [Online]. Available: https://jurnalmesin.petra.ac.id/index.php/mes/article/view/17820
- I. Qistina, D. Sukandar, and Trilaksono, "Kajian Kualitas Briket Biomassa dari Sekam Padi dan Tempurung Kelapa," J. Kim. Val. J. Penelit. dan Pengemb. Ilmu Kim., vol. 2, no. November, pp. 136–142, 2016, doi: http://dx.doi.org/10.15408/jkv.v0i0.4054.

- K. F. Rahma, Rahman, and A. M. Haqq, "Inovasi Pembuatan Biopelet Sekam Padi Sebagai Bahan Bakar Alternatif Terbarukan Untuk Aktivitas Rumah Tangga," Bogor, 2011. [Online]. Available: https://repository.ipb.ac.id/handle/123456789/44238
- M. Trifiananto, "Karakterisasi Gasifikasi Batubara Tipe Updraft dengan Variasi Equivalence Ratio," Progr. Magister Bid. Keahlian Rekayasa Konversi Energi Jur. Tek. Mesin Fak. Teknol. Ind. Inst. Teknol. Sepuluh Nop. Surabaya, pp. 11–13, 2015
- N. Couto, A. Rouboa, V. Silva, E. Monteiro, and K. Bouziane, "Influence of the biomass gasification processes on the final composition of syngas," Energy Procedia, vol. 36, pp. 596–606, 2013, doi: 10.1016/j.egypro.2013.07.068
- N. Nurulhuda, "Pengaruh Variasi Laju Alir Udara terhadap Efisiensi Termal pada Proses Gasifikasi dengan Sistem Updraft," Universitas Hasanuddin, 2022. [Online]. Available: http://repository.unhas.ac.id:443/id/eprint/14589
- P. Papilo, K. Kunaifi, E. Hambali, N. Nurmiati, and R. F. Pari, "Penilaian Potensi Biomassa Sebagai Alternatif Energi Kelistrikan," J. PASTI (Penelitian dan Apl. Sist. dan Tek. Ind., vol. 9, no. 2, pp. 164–176, 2016, [Online]. Available: https://publikasi.mercubuana.ac.id/index.php/pasti/article/view/480
- S. Academy, "Energi Tak Terbarukan: Arti, Jenis, Manfaat, dan Contoh," Sampoerna Academy. [Online]. Available: https://www.sampoernaacademy.sch.id/id/energitakterbarukan-arti-jenis-manfaat-dan-contoh/
- S. Safarian, S. M. Ebrahimi Saryazdi, R. Unnthorsson, and C. Richter, "Modeling of hydrogen production by applying biomass gasification: Artificial neural network modeling approach," Fermentation, vol. 7, 2021, doi: 10.3390/fermentation7020071
- The U.S. Energy Information Administration (EIA), "Biomass explained," EIA Web. [Online]. Available: https://www.eia.gov/energyexplained/biomass/