e-ISSN:2829-6192, p-ISSN: 2829-6184 DOI: <u>3https://doi.org/10.38035/ijam.v1i2</u> Received: 25 October 2022, Revised: 14 October 2022, Publish: 24 November 2022 <u>https://creativecommons.org/licenses/by/4.0/</u>

Evaluating the Hydraulic Performance of Existing Water Supply Distribution System: The Case of Tebela Town of Wolaita Zone, Southern Ethiopia

Zerihun Tefera Toma^{1*}, Mhiret Dananto²

¹⁾ Hawassa University, Hawassa, Ethiopia, email: <u>mamezerihun@gmail.com</u>

²⁾ Hawassa University, Hawassa, Ethiopia, email: <u>myadssa2004@yahoo.com</u>

*Corresponding Author: Zerihun Tefera Toma¹

Abstract: The adequate and reliable water supply in the developing towns of Ethiopia is becoming a challenge for most water utilities especially public service providers like Tebela town. The main objective of this research was to check the hydraulic performance of Tebela town's water distribution system by evaluating water demand and production, losses of water, and hydraulic parameters. Both secondary and primary data sources were used for this study. Primary data was collected through field surveys and photographs of relevant sites and infrastructures. The secondary data was collected from design documents, literature, journals, and office. Moreover, to analyse the existing water distribution system, a model was developed by using WaterGEMSv8i software. The model simulation run was performed for peak and low demand scenarios to analyze the distribution system. The analysis shows that the water supply coverage was 25.9%. The water loss of the town was 17.2% from the total water production. Modeling results showed violation of maximum and minimum pressure and velocity criteria at different junctions and pipes. After modifying the existing water distribution system, 96.23% of the junctions are in the recommended pressure range and 73.50% of the pipes are in the recommended velocity range at minimum hourly consumption. Generally the result of the analysis shows that the overall hydraulic performance of water distribution of the town was moderate, which is reflected by medium water production rate, water consumption, and nonrevenue water, also low water coverage, some velocity and pressure is not in permissible range. Therefore, it is important to rehabilitate and improve the water distribution system capacities, establish pressure zones, increase pumping rates, and drill additional boreholes to meet the current water demand and future demand.

Keywords: WaterGEMSv8i, Hydraulic Performance, Simulation, Water Distribution System, Water Losses

INTRODUCTION

Water is an essential and life-sustaining natural resource and is critical for the survival of all living organisms, food production and economic development. Problems with providing a satisfactory water supply to the rapidly growing population, especially in developing countries, are increasing from time to time. The sustainable provision of adequate and safe drinking water is the most important of all public services (Dassalew, 2017).

The adequate and reliable water supply in the developing towns of Ethiopia is becoming a challenge for most water utilities. Problems with providing a satisfactory water supply to the rapidly growing population, especially in developing countries, are increasing from time to time (Asmelash, 2014).

This research evaluated the performance of Tebela's water supply system in terms of main performance indicators such as water supply coverage, water loss, hydraulic performance, and recommended solutions for improving the water supply service.

Tebela town has water supply and demand related problems. Presently, Tebela faces a serious deficit in its water supply due to an increased population and expanded economic activity in and around the subsystems. The performance of the urban water supply system is to improve the water supply service level, and the main activities are to find the gap or to fill it, between the demand and the existing water supply system, and to analyze whether the distribution system is working as per design or not. Consequently, this study investigated the water supply and distribution conditions of the town in terms of water supply coverage, water demand, water supply and distribution system, and the gap associated with water scarcity to start intervention measures in order to address the aforementioned problems in the study area.

The main objective of this research was to evaluate the performance of the existing water supply distribution system in Tebela town.

The specific objective of this research includes:

- 1. To evaluate water losses of existing water distribution system, and
- 2. To simulate the hydraulic parameters of existing water distribution system

METHODS

Description of the Study Area

The study area is Tebela Town, Humbo Woreda of Wolaita Zone, Southern Nations Nationalities and Peoples Regional State (SNNPRS) of Ethiopia. It is located 346km away from the country's capital, southwest of Addis Ababa, and 149km away from the northeast of the capital city of the region, Hawassa, which is also located 20km away from the south of Soddo town. It shares a boundary with the Eastern Damot Woyde Woreda, in the North with Sodo Zuria Woreda, in the South with Mirab Abaya Woreda, and in the West with Offa Woreda. The town lies between a latitude of 60 42' 40" N and a longitude of 370 46' 40" E.

Tebela town altitude ranges between 1200 and 1900 m.a.s.l.

According to the results of the housing and population census, the current total population of Tebela town in 2020 is 43,314 of which 22,485 are males and 20,829 are females with an average family size of 5 people per household. The town administrative has two kfile-ketema, Alata and Abana. Alata kfile ketema contains (01, Ambe shoya, Abbela sipa, and Ela qebela) kebeles and Abana kfile ketema contains (02, Koysha ogodama and Shochore ogodama) kebeles.

Figure 1. Location map of the study area (Source: WSU GIS Lab, 2020)

Year		2018			2019			2020	
				Population					
Kebeles	М	F	Total	Μ	F	Total	Μ	F	Total
01	5060	4687	9747	5019	4648	9667	3965	3673	7638
02	4279	3963	8241	4787	4434	9221	3874	3592	7466
Ambe shoya	3215	3471	6686	3496	3238	6734	3534	3273	6807
Abbela sipa	909	981	1890	1585	1712	3297	2309	2138	4447
Koysha									
ogodama	1656	1788	3445	1819	1964	3783	2647	2452	5099
Schchore									
ogodama	1944	2099	4043	1937	2091	4028	2797	2591	5388
Ela qebela	2592	2793	5385	2215	2385	4600	3359	3110	6469
Total	19,655	19,782	39,437	20,858	20,472	41,330	22,485	20,829	43,314

Teble 1. Tebela town administration population in each kebele (2018-2020)

The population of Alata kfile ketema is 25,361 of which 13,167 are males and 12,194 are females. Abana kfile ketema is 17,953 of which 9,318 are males and 8,635 are females. According to the Tebela town administration office, the majority of the town's population is growing at a rate of 4.8 percent per year (CSA, 2020).

Material

This research was conducted to evaluate the hydraulic performance of the existing water supply in the distribution system. To achieve the goal of the research, the materials that were used were computers, endnote, Arc GIS Version 9.3, WaterGEMS V8i, and GPS Garmin72.

Data Analysis

To analyse the data which is collected from different sources, both qualitative and quantitative methods were used. From the quantitative methods, the descriptive statistical methods like percentage, graphs and cross tabulation was used in order to come up with the appropriate result. In addition to this, qualitative methods like narration were employed in the

study. The computer software applications Origin8 and Excel were used to analyse the data obtained from the office. The field survey data for the distribution system was evaluated by using the engineering software called WatergemsV8i.

Modeling of the Existing Distribution System

1. WaterGEMS V8i

WaterGEMSV8i was used for the purpose of understanding the pressure regime, demand, velocity, head loss, and overall systematically studding and better understanding network operation (CAD/GEMs, 2008). Hydraulic performance analysis was carried out for an extended period of time using WaterGEMS. A GIS location map showing the town's water sources, reservoirs, and boost stations is produced by taking galvanized steel pipe (GPS) readings of the existing water sources, reservoirs, and pumping stations.

2. Sample size

Ideally, during the water distribution model calibration process, each link and node was adjusted for each link and node. However, 2%-10% of representative sample measurements can be made available for the use of model calibration due to limited financial and labour requirements for data collection. In general, international proposed guidelines stipulate that for a medium to highly detailed network model (medium to low skeletnoization), the following limits should be adopted (AWWA, 2005):

- a) 3% of the nodes in the network should be tested for pressure readings.
- b) 5% of the pipes in the network should be tested for flow readings. In the study area, there are 106 total junctions in the network. However, the minimum acceptable sample size was 3% of the total junction.

Hence, the sample size of the network was $0.03 \times 106 = 3.10$, which is approximately 3 junctions. Therefore, for this study area, three representative sample measurements were taken from the whole water distribution system for calibration.

RESULTS AND DISCUSSION

Evaluating the Current Water Supply Performance of Tebela Town 1. Water Supply Coverage

Water supply coverage can be defined as the percentage of people in access of water supply service in the town.

	Table 2. Water supply coverage of Tebela Town for the years 2019-2020											
Year	Annual water consumption (m ³ /yr)	Total population n <u>o</u>	Consumption l/person/day	Total population served by water from utility	percentage of water coverage							
2019	322,871.8	41,330	21.40	11,796	28.6%							
2020	337,230.3	43,314	21.33	11,207	25.9%							

Source: Tebela town water supply and sewerage enterprise data, and own study analysis

Percentage of Water Supply Coverage = (Population served/Total population)*100

In 2010 the Ethiopian Government presented the equally ambitious Growth and Transformation Plan (GTP) 2011-2015, which aims at increasing drinking water coverage, from 68.5% to 98.5%. In comparison with this plan, the water supply coverage is behind the plan (Ministry of Finance and Economic Development, 2010) and also in comparison, the Ethiopia's capital city, Addis Ababa water supply coverage during 2009 was found to be 60.67% (Shimelis Kabeto, 2011).

2. Water Production and Consumption Capacity of the Service Table 3. Water production and Consumption

N <u>o</u>	Description	Units	2016	2017	2018	2019	2020
1	Total population living in the service area	N <u>o</u>	35,907	37,630	39,437	41,330	43,314
2	Population served public water taps	N <u>o</u>	8,530	6,438	4,811	3,531	2,712
3	Population served yard water taps	N <u>o</u>	7,181	7,525	7,887	8,265	8,495
4	Average daily per capita water cons.	(l/c/d)	21.52	21.47	21.41	21.40	21.33
5	Number of water point	N <u>o</u>	15	13	12	12	12
6	Duration of supply	Hr/d	8	9	10	11	12
7	Volume of water production	m ³ /y	338,441.1	361,091.5	373,251.8	392,742.7	407,267.0
8	Volume of water sold	m ³ /y	281,947.0	294,845.6	308,131.0	322,871.8	337,230.3

Source: Tebela town water supply utility office data and own study analysis

Water production and consumption are indicated as below in figure 2.

Figure 2. Total volume of water production and water billed

Water Losses Analysis

One of the major challenges facing water utilities is the high volume of water lost in distribution networks. If a large quantity of supplied water is lost; it is difficult to meet the level of satisfaction of the user community. Whereby, water loss for Tebela town's water supply system was assessed and discussed as below; because of the type of the system, the water is distributed equally to the community but, with the similar challenge mentioned above, it performed inefficiently against its aim.

The current production of water supply for Tebela town depends on Abana bora boreholes and koysho ogodama natural spring water that are administrated by Tebela town water supply and sewerage enterprise office. The designed water production capacity of the borehole system is 24.92l/s (717m3/day) and the spring capacity is 4.6 l/s (398.1m3/day).

Water loss from water distribution systems (WDSs) has long been a feature of water distribution system operations management. According to figure 3.2, the water loss in 2020 (17.2%) is less than 2019 (17.79%) due to pump, pipe and fitting maintenance. The average amount of water, which actually reaches the consumers, therefore, accounts for only 82.8% of the total water produced. According to (Mckenzie et al., 2006), the system efficiency is good (acceptable) if above 75% of water produced reaches the consumer. Thus, Tebela town water supply system is good (acceptable).

Figure 3. Water losses in percentage

1) Total Water Loss Expressed as a Percentage (UFW)

The total annual water produced and consumed within the specified year (2020) was 407,267.0m3 and 337,230.3m3 respectively, and the annual total water loss was 70,036.7m3. That accounts for 17.2%. (Saroj, 2008) gives classification and descriptions of UFW as acceptable, which could be monitored and controlled, when the loss is < 10%, as intermediate, which could be control when the loss is 10-25% and as a matter of concern that reduces the water supply when the loss is > 25%. According to this study, the average water loss in Tebela town was 17.2%, showing that a controlling mechanism was needed.

a) Water loss expressed as the length of the main pipe

One of the best indicators of water loss in the distribution network system was determining loss as per the length of the main pipe. According to the town's water utility report, the total length of the water distribution line was estimated at around 22.592km. The water loss per kilometre length of the main pipe was determined as 70,036.7m3/year \div (22.592km 365days)= 8,493.33liters/km/day. According to (Farley et al., 2008), the performance indicator of the physical loss target matrix describes a good condition system if water loss per length of main pipe is <1000 liters/km/day, an average condition system is between 10,000-18,000 liters/km/day and a bad condition system is > 18,000 liters/km/day. In line with this, the town's water loss per length of main pipe was 8,493.33 liters/km/day, which is shown to be in good condition.

b) Water loss expressed as per the number of service connections

Tebela town total number of service connections was 1730, which were obtained from the town's water utility. The water loss per number of service connections was determined as $70,036.7m3/year \times 1000$ liters $\div (1,730\times 365 days) = 110.91$ liters/connection/day. According to (Farley et. al., 2008), the performance indicator of the physical loss target matrix describes a good condition system if water loss per length of main pipe <150 liters/connection/day, an average condition system is between 150-450 liters/connection/day and a bad condition system is > 450 liters/connection/day. In line

with this, the town's water loss per length of main pipe was 110.91 liters/connection/day, which is shown to be in good condition.

c) Unbilled authorized consumption

Unbilled authorized consumption is the volume of water used for operational purposes, such as fire fighting, and water produced for free by water supply service workers. According to the Tebela town utility report (2020), the total volume of unbilled authorized consumption of water was 0m3/year.

d) Estimating apparent losses

Apparent losses consist of unauthorized consumption, metering inaccuracies, and data handling errors (Lambert and Taylor, 2010) and are aggregated into 2,859.6m3/ year + 7,526.92m3/year + 843.01m3/year, which is equal to 11,229.53m3/year. This loss amount was 2.76% of the total production of water, which is about 16.03% of the total system loss as detailed in the following sub-section.

1) Unauthorized consumption

Unauthorized consumption includes illegal connections, unauthorized use of fire hydrants, meter bypassing, and a deficient billing collection system. It is difficult to estimate unauthorized consumption. According to the water service office's 2020 report, the amount of unauthorized consumption in the town was 2,859.6m3/year.

2) Customer meter inaccuracies

Water meter inaccuracies are considered to be a significant component of apparent losses in the water supply system (Rizzo and Cilia, 2005). Water losses as a result of metering inaccuracies were analyzed using the comparison of testing bench values and the average water reading value of customer meters that were obtained from authorized consumption water in 2020. The total customer metering inaccuracies lost in the town's water utility was estimated at 7,526.92m3/year taken from the utility office.

3) Systematic data handling error

Data handling errors in the mater reading and billing systems contributed to the apparent losses. It includes billing system entry errors, account adjustments, invalid meter consumption readings, poor accounting, and others. It is difficult to estimate the value of the volume of data handling errors. Therefore, it is recommended to take the default value, which is 0.25% of the billed meter volume (Saroj, 2008). Based on the above recommended value, the total lost volume of data handling error of Tebela town was 0.25% *337,230.3m3/year, which is equal to 843.01m3/year.

e) Estimating real losses

This category includes the volume of water lost through all types of leaks, bursts, and overflows on the main, service reservoir, and service connection, up to the point of customer metering. Real losses can be calculated as the volume of NRW minus the sum volume of apparent losses and unbilled authorized consumption. Based on this definition, the volume of total real loss was 58,807.17m3/year, which covers 14.44% of the total production, which is 83.96% of the total system loss. This result signifies more of the loss in the system as real loss which is mainly caused due to deterioration of the existing distribution system infrastructure.

2) Quantifying water loss by the water balance method

To estimate the water loss by using the water balance method for Tebela town in the year 2020 based on international water association (IWA) standards, the water balance components are obtained by using the available data and estimated in the above. The results are summarized in the table below.

	Table 4. Water balance (m3/year) for Tebela town year 2020								
System	Authorized	Billed	Billed metered consumption						
in put	consumptio	authorized	m^{3} /year =337,230.3	Revenue					
volume	n	consumption	Billed unmetered	water					
=407,267	=337,230.3	=337,230.3	consumption m ³ /year=0	=337,230.3					
m ³ /year	m ³ /year	m ³ /year		m ³ /year					
		Unbilled authorized	Unbilled metered consumption m ³ /year=0						
		consumption $=0$	Unbilled unmetered consumption						
		m ³ /year	m ³ /year=0						
	Water loss	Apparent loss	Unauthorized consumption						
	=70,036.7	=11,229.53	m ³ /year=2,859.6	Non-					
	m ³ /year	m ³ /year	Customer meter inaccuracies	revenue					
			=7,526.92 m ³ /year	water =70,036.7					
			Systematic data handling errors =843.01 m ³ /year	m ³ /year					
		Real	loss =58,807.17m ³ /year						

Hydraulic Performance of Water Supply System

The performance of water distribution networks does not depend only on the ability to deliver adequate flows and pressures, but also on its efficiency in doing so. Previous measures equate demand satisfaction to performance and apply alternate reliability measures that are proportional to pressure surplus. The water distribution network is a loop network; it has one reservoir tank at higher elevations. The level of the reservoir tank is 1678.38m and the flow distribution is supplied by a gravity system from the reservoir to customer end taps. Flow plays a role in supplying flow. Pumping is still required from the source (BH) to the reservoir tank. The pump curve is defined by one head versus flow coordinate of 86 m for 24.9l/s. The network configurations were modelled, the original (looped) system, the same system with fewer loops, and with increased diameters.

1. Network simulation

To build and simulate the hydraulic model, WaterGEMSV8i water distribution modeling software was used. The water distribution network map was obtained from the Tebela town water supply and sewerage enterprises which were prepared with a feasibility study design document report of the town's water supply distribution network.

2. Pipe network maps development

In building system models, it is typically used to draw a system map for the water distribution system because it illustrates a wide variety of valuable characteristics. System maps may include information such as:

- Pipe alignment, connectivity, material, diameter, and so on.
- The locations of other system components, such as tanks and valves,
- Miscellaneous notes or references for tank characteristics
- Pressure zone boundaries, elevations

In my study, the map was developed using data collected from the site and analyzed by WaterGEMS software.

Figure 4. Tebela town's existing water distribution pipe network (Source: Own software analysis

3. Analysis of pressure, flow and velocity of existing water distribution system

a) Junction report of WaterGEMS out put

The evaluation of the analysis results of the given existing water distribution system in Tebela town nodes reports analysis in a hydraulic model of WaterGEMS V8i. According to the model result, most areas of the distribution system have low velocity. This low velocity causes several problems. And some of them are shortage of source (Q in l/s), large size of pipe diameter, and topography of the area. So some parts of the distribution net work system need modification of pipe diameter during minimum day demand time to adjust pressure within the (MoWR, 2006) guide line standard as in Apendix_B1.

b) Pipe report of WaterGEMS output

Water velocities shall be maintained at less than 2.2 m/sec, except in short sections and velocities in small diameter pipes (evaluation results analysis of hydraulic parameters of pipe sizes with velocities by the use of hydraulic model (WaterGEMS V8i) standard are discussed. The velocity of 0.42 m/s–2.2 m/s during analysis is listed in appendix_A2 and B2 according to the (MoWR, 2006) guide line standard. As well as all velocity greater than 0.6 m/s of the distribution network listed in appendix_A2 during peak hour time from 6:00-9:00 AM.

c) Pressure analysis

In Ethiopia's water supply distribution system network, the minimum and maximum operating pressures were 15m and 70m, respectively (MoWR, 2006a). In order to achieve a 15m minimum and 70m maximum operating pressure, it is necessary to provide a pressure control valve, establish a boosting station, and replace the old pipe with the new one. The maximum pressure in the main is considered not to exceed 80m to limit leakage and stress on pipes (Mosissa, 2008). There is no defined maximum and minimum pressure ranges designed by the town's water utility. According to (Totsuka et al., 2004), those consumers further away from supply points always collect less water than those nearer to the source due to pressure losses in the network, which increase as far as the source. Pressure was increased as elevation decreased and vice versa. Households located at a higher elevation and close to the reservoir site have access to water at low water pressure (Mekonnen, 2014). During hydraulic modeling of the water pressure of Tebela town, 106 nodes and 117 pipes were identified. With regard to the current simulation, the result of pressure at peak consumption was summarized in table 5, and detailed in appendix A1.

Table 5. Distribution of pressure at peak nour consumption						
Pressure (m of H2O)	Number of nodes	Percentage				
<=15	26	24.53				
<=25	10	9.43				
<=35	19	17.92				
<=45	17	16.04				
<=55	18	16.98				
<=65	16	15.09				
<=70	0	0				
Above	0	0				
Total	106	100				

Table 5 Distribution of programs of pools hour consumption

After hydraulic analysis using BenetlyWaterGEMSV8i as shown that table 5, 24.53% of the nodes are under desirable minimum pressure and 0% of the nodes are exceeding maximum allowable pressure during peak hour consumption. At peak time consumption, junctions 43, 51, 52, and 54 were all under negative pressure. Thus, only 75.47% of nodes have pressure within the recommended limit (15m to 70m).

Therefore, from the above table result, 24.53% should be improved in the distribution system to meet the permissible pressure. Lower pressure can cause reduction of quantities of water supplied to the consumer and entry of a contaminant or self deterioration of water quality within the network itself severe damage to public health.

Figure 5. Pressure contour map of Tebela town at peak hour consumption

Table 0. Distribution of pressure at minimum consumption time						
Pressure (m of H2O)	Number of nodes	Percentage				
<=15	4	3.77				
<=25	21	19.81				
<=35	25	23.58				
<=45	27	25.47				
<=55	15	14.15				
<=65	9	8.49				
<=70	3	2.83				
Above	2	1.89				
Total	106	100				

	Table 6.	Distribution	of	pressure at	minimum	consum	ption	time
--	----------	--------------	----	-------------	---------	--------	-------	------

As shown in table 6 above, 3.77% of the nodes are under desirable minimum pressure and 1.89% of the nodes are exceeding maximum allowable pressure during minimum hour consumption. There is no negative pressure during a minimum consumption time, while, 94.34% of the nodes are in the permissible pressure range of a minimum of 15m and a maximum of 70m. However, 1.89% of the nodes were getting water above standard pressure (>70m) due to low consumption at midnight when most of the consumers are sleeping and not using water. Higher pressure may cause the pipe to burst.

Figure 6. Pressure contour map of Tebela town at minimum hourly consumption

In the case of Tebela town, the main causes of water supply interruption were shortage of water from the source, lack of maintenance, improper function of the pump, and interruption of electric power in the pumping pressure system. In conclusion, to achieve a 15m minimum and 70m maximum pressure, it is necessary to give a pressure control valve, establish a boosting station, and replace the old pipes with new ones that have the required diameter.

d) Velocity analysis

The velocity of water flow in a pipe is also one of the important parameters for evaluating the hydraulic performance of a water supply distribution system. According to (Andey and Kelkar, 2007), flow in the pipe below 0.6m/s causes water stagnation, sediment accumulation, and bacterial growth in the pipe. On the other hand, the velocity of flow in the pipe above 2m/s causes head loss as well as water hammer. The town's water supply distribution system's velocities during peak consumption time were summarized in table 7 below.

Velocity (m/s)Number of pipesPercentageEffect<=0.510.85%Water stagnation happens<=0.63429.06Sedimentation happens<=27866.67An acceptable levelAbove43.42Head loss and water hammerTotal117100%				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Velocity (m/s)	Number of pipes	Percentage	Effect
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	<=0.5	1	0.85%	Water stagnation happens
<=27866.67An acceptable levelAbove43.42Head loss and water hammerTotal117100%	<=0.6	34	29.06	Sedimentation happens
Above43.42Head loss and water hammerTotal117100%	<=2	78	66.67	An acceptable level
Total 117 100%	Above	4	3.42	Head loss and water hammer
	Total	117	100%	

Table 7. Velocity for water supply distribution system during peak hour consumption

As indicated in table 7 above, 0.85% of the pipes are below the desirable minimum velocity and 3.42% of the pipes are exceeding the maximum allowable velocity during peak hour consumption. While 95.73% of the pipes are in the recommended velocity range of minimum 0.6 m/s and maximum 2 m/s velocities. In this study area, 4.27% of the velocity is not in a suitable range based on Ethiopia's urban water supply design guideline criteria.

Figure 7. Velocity for water supply distribution network during peak hour consumption

	I ubic of v cloch	aco tor mater supply a	ist is atton system	r during min consumption time
	Velocity (m/s)	Number of pipes	Percentage	Effect
_	<=0.5	40	34.18	Water stagnation happens
	<=0.6	9	7.69	Sedimentation happens
	<=2	68	58.12	An acceptable level
	Above	0	0	Head loss and water hammer
_	Total	117	100%	

Table 8	Velocities	for water	sunnly	distribution	system	during min	consumpt	ion time
I able 0.	v ciucities	IUI water	suppry	uistiinuuon	system	uur mg mm	consumpt	ion unic

As shown in table 8 above, 34.18% of the pipe was below the desirable minimum velocity and no pipe velocity exceeded the maximum allowable velocity during low consumption time. While 65.81% of the pipes are in the recommended velocity range of minimum 0.6 m/s and maximum 2 m/s velocities. In this study area, 34.18% of the velocity is not in a suitable range based on Ethiopia's urban water supply design guideline criteria. There is no head loss and water hammer in this study area during the minimum consumption time.

Figure 8. Velocity for water supply distribution network during minimum hour consumption.

Generally, the town's water distribution system's velocity was inadequate since velocity in major pipe parts during the minimum consumption time and peak hour consumption, as shown in figures (7) and (8). Therefore, control of the flow velocity in water distribution networks should be maintained in order to avoid pipe breaks, water hammer, and water stagnation which cause sediment deposition in the pipe and head loss.

Calibration Model Result

Calibration is an iterative procedure of parameter evaluation and adjustment by comparing simulated and observed values. The pressured field measured data at J-28, J-51 and J-88 were used for calibration of the model. As the model gives an automatic C value for GSP pipes, it is 130. Since the existing pipe age is seven years, the roughness coefficient of pipes is not less than the model values. Following analysis, it was discovered that model data and observed data were reasonably matched for a C value of 130, as per the AWWA guideline (2005). The model output and observed data (from three observation points) matched within a reasonable extent for a C value of 130 for given pipes.

Figure 10. J-51 Pressure calibration result

Figure 11. J-88 Pressure calibration result

The degree of accuracy varies depending on the size of the system and the amount of field data and testing available to the modeler.

Table 9. Junction pressure calibration based on difference pressure errors								
Time (hr)	Junctions	Observed pressure	Simulated pressure	Differences pressure				
Time (m)	Junctions	(m H ₂ O)	(mH_2O)	error (mH ₂ O)				
	J-28	50	51.7	1.7				
3:00 AM	J-51	15	16.6	1.6				
_	J-88	71	72.6	1.6				
	J-28	47	50	3				
6:00 AM	J-51	6	5.1	-0.9				
_	J-88	45	47	2				
	J-28	46	46.3	0.3				
2:00 PM	J-51	10	12.8	2.8				
_	J-88	44	46.6	2.6				
	J-28	49	50.2	1.2				
6:00 PM	J-51	11	12.7	1.7				
_	J-88	72	75.1	3.1				
		Average		1.725				

.....

...

. .

As shown in table 3.8 above the computed pressure values have an average error of 1.725m pressure from simulated to observed values. As a result, the model is calibrated to meet the criteria for pressure calibration at the average level (average 1. 5m to maximum 5m).

Model Validation

Methods used to get unbiased estimates of the future performance of statistical prediction models and classifiers include data splitting and re-sampling. Model validation is a means of assessing the applicability of a given model with respect to field measured data. The pressure field measured values at J-28, J-51, and J-88 were used for validation of the model. The model validation work was taken manually using the correlation coefficient equation (R2) method and the graph figure presented 12 below.

Figure 12. Relation between field measured and simulated pressure

From the above figure 12, the correlation (R2) value for peak low demand time was 0.962. Since the value of R2 approaches 1 for this scenario, that indicates a good correlation between the field's measured pressure and simulated pressure. R2 shows how much of the variance in the dependent variable would be accounted for if the model was derived from which the sample was taken.

Hydraulic Network Improvement

There are three sets of design criteria to be considered in designing or improving a system. These are pressure, residual chlorine, and velocity. The design criteria used in the design of water supply distribution system components, nodal pressure during the period of peak demand, and optimum velocities of the transfer and distribution mains. Modification to the problems is made by creating new alternatives and scenarios, trial and error procedures until a solution appears to meet the design criteria.

a) Adding a pressure reducing valve to the network

The best operational practice to optimize the operation of the water distribution system was to control the pressure in the network. This management of pressure has been reflected in the aspect of reducing excessive pressure by installing a pressure reduction valve. By controlling the pressure, it is possible to reduce the amount of water loss from the system, the occurrence of internal damage, and power consumption related to high pressure at a minimum hourly demand pressure was high at lower elevation areas. Installing pressure-reduced valves around Humbo St.George Church at junction (J-17) and Mehal Kebele area at junction (J-88) links that have maximum pressure was used to reduce excessive pressure to the desired allowable value seen in the table below.

		1 0	<u> </u>
Junction	Elevation (m)	Pressure(mH ₂ O) before adding PRV	Pressure(mH ₂ O) after adding PRV
J-17	1608.40	70.3	58.4
J-88	1596.35	75.1	60.7

 Table 10. Excessive pressure in the improved system at minimum consumption hour

Table 11. Im	proved system	nodes with	pressure	e at n	ninimum consum	ption hour	
D		3.7	1 C	1	D		

Number of nodes	Percentage
4	3.77
102	96.23
106	100
	Number of nodes 4 102 106

After modifying the existing water distribution system by adding a pressure reducing valve, 96.23% of the junctions are in the recommended pressure range of a minimum of 15m of H2O and a maximum of 70m of H2O, and only 3.77% of the junctions are not in the recommended pressure range.

b) Adding a pressure boosting pump to the network

According to (Swamee et al., 2008) the minimum design nodal pressures are prescribed to discharge design flows onto the properties. In case of high rise buildings, booster pump (valves) are installed in the water supply system to water for the pressure head requirements. Installing pressure booster pump at Evangelical lutheran church, Tebela elementary school, Shoya and Jegera village in order to increase the lower pressure of 22 junctions, the area of low pressure value seen in the table below.

c) Improving pipe size

Increasing the diameter of the pipe in a water distribution model results in a corresponding decrease in velocity and an increase in pressure. At peak hour consumption, the velocities outside of the design range are modified by resizing the pipe diameter. The pipe which does not meet the allowable minimum and maximum velocity was selected for modification to improve the water distribution system.

Label	Existing pip	Existing pipe size(mm)		Modified pipe size(mm)		
	Diameter (mm)	Velocity(m/s)	Diameter (mm)	Velocity(m/s)		
P-1	150	0.45	80	0.80		
P-6	40	0.42	25	0.61		
P-7	40	0.42	25	0.61		
P-16	40	0.42	25	0.60		
P-18	40	0.42	25	0.60		
P-22	40	0.42	25	0.60		
P-25	50	0.47	32	0.64		
P-27	40	0.42	25	0.62		
P-29	40	0.42	25	0.60		
P-31	40	0.42	25	0.61		
P-33	40	0.42	25	0.60		
P-34	40	0.42	25	0.60		
P-35	40	0.42	25	0.62		
P-36	40	0.42	25	0.61		
P-40	40	0.42	25	0.60		
P-47	40	0.42	25	0.60		
P-48	40	0.42	25	0.60		
P-50	80	0.42	50	0.71		
P-55	40	0.42	25	0.63		
P-59	40	0.45	25	0.61		
P-61	40	0.42	25	0.60		
P-63	40	0.42	25	0.60		
P-67	40	0.42	25	0.60		
P-69	40	0.45	25	0.62		
P-70	40	0.42	25	0.61		
P-73	50	0.49	32	0.64		
P-79	40	0.42	25	0.60		
P-80	40	0.42	25	0.60		
P-81	40	0.42	25	0.62		
P-82	40	0.42	25	0.61		
P-85	40	0.42	25	0.60		
P-86	40	0.42	25	0.61		
P-88	40	0.42	25	0.60		
P-91	40	0.42	25	0.60		
P-94	50	0.4	32	0.64		
P-97	80	0.49	50	0.71		
P-104	40	0.42	25	0.60		
P-105	40	0.42	25	0.60		
P-107	40	0.45	25	0.62		

Table 13. Improved system velocity in the distribution system at minimum hourly consumption

Velocity (m/s)	Number of pipes	Percentage	Effect
<=0.6	31	26.49	Sedimentation happens
0.6-2	86	73.50	An acceptable level
>2	0	0	Head loss and water hammer
Total	117	100	

After modifying the pipe sizes in the existing distribution system as shown in the table above, 73.50% of the pipes are in the recommended velocity range of above 0.6 m/s and below 2 m/s.

CONCLUSION

The purpose of this study was to evaluate the performance of the Tebela town water distribution system under existing and projected future demand conditions. Based on the evaluations presented, the following conclusions and recommendations were forwarded.

The main sources of water for the people living in Tebela town were borehole which gives 717m3/day of water and natural springs with distribution that provided 398.1m3/day. The town has no water treatment plant, but the reservoirs water is treated with chlorine monthly. The water coverage of the area is about 25.9%, which is moderate level.

Total water loss was calculated using a percentage of the system input volume, the length of the mains, and the number of connections. Generally, based on the analysis results, the total water loss from the system was 70,036.7m3/year, which accounted for 17.2% of the total water production in the study area. The total apparent loss volume includes the loss due to unauthorized consumption, metering inaccuracies, and data handling errors and was aggregated to 11,229.53m3/year, which covers 16.04% of the total losses. Real loss includes the volume of water lost through all types of leaks, bursts and overflows on service reservoirs. In this study, the real loss volume was found to be 58,807.17m3/year, which covers 83.96% of the total losses. Real losses are the dominant component of water losses in Tebela town's water distribution system. High levels of water losses have a serious impact on Tebela water service finance as well as on available water resources in water scarce environments. During hydraulic modeling of the town's water pressure, 106 nodes and 117 pipes were identified. At peak hour consumption, 24.53% of the nodes are under desirable minimum pressure, no nodes are exceeding maximum allowable pressure, junctions 43, 51, 52, and 54 are negative pressure, and 75.47% of the nodes have pressure within the recommended limit. During minimum time consumption, 3.77% of the nodes are below the desirable minimum pressure, 1.89% of the nodes are getting water above standard pressure, and 94.34% of the nodes are in the permissible pressure range. For peak hour consumption, 0.85% of the pipes are below the desirable minimum velocity, 3.42% of the pipes velocity is exceeding the maximum allowable velocity, and 95.73% of the pipes are in the recommended velocity range. During low consumption times, 35.04% of the pipes' velocity is below the desirable minimum velocity, and 64.96% of the pipes are in the recommended velocity range. After modifying the existing water distribution system, 96.23% of the junctions are in the recommended pressure range of a minimum of 15m of H2O and a maximum of 70m of H2O. Only 3.77% of the junctions are not in the recommended pressure range. Also, 73.50% of the pipes are in the recommended velocity range of above 0.6 m/s and below 2 m/s at minimum hourly consumption; only 26.50% of the pipes are less than or equal to 6m/s.

Therefore, the result of the analysis showed that the overall technical performance of the existing water distribution system in the town was moderate, which was reflected by the medium water production rate, water consumption, level of nonrevenue water, water coverage, and same velocity and pressure not in the permissible range.

REFERENCES

 Abdo (2009) Evaluation of urban water supply options using Weap: The case of Nablus City.
 ABOMA.T (2017) Performance Evaluation of Goba Town Water Supply Distribution System Oromia Regional State, Ethiopia.

Amedework (2012) Hydraulic network modeling and upgrading of legedadi subsystem Water supply: A case study of Addis Ababa city.

- Asmelash Zewdu (2014). Assessing Water Supply Coverage and Water Losses From Distribution System for planning Water loss Reduction Strategies. Aksum.
- AWWA. (2005) Computer modeling of water distribution systems: American Water Works Association.
- Benyam, B., 2016. ASSESSMENT OF THE WATER DISTRIBUTION NETWORK OF METU. Addis Ababa.
- Bentley Water CAD/GEMs BW. (2008) ""Water Distribution Design and Modeling, Full Version V8i"." Journal-American Water Works Association 99: 99-106. 9.
- Bogale B. (2016) Assessment of the water distribution network of Metu town water supply system, Ethiopia. MSc Thesis. Addis Ababa University.
- CSA. (2007) "Population and housing census of Ethiopian, central statistics Agency".
- Dawit Kidane (2015). The effects of distribution system on house hold drinking water quality in Addis Ababa.
- Desalegn Eshetu (2015). Urban water supply System performance Assessment, the case of Bahirdar Town, Ethiopia.
- EPA (2010) Control and mitigation of drinking water losses in distribution systems.
- Farley M, Wyeth G, Ghazali ZBM, et al. (2008) The manager"s non-revenue water handbook: a guide to understanding water losses.
- Garg (2010) Water supply Engineering. Twenteeth revised edition, Delhi.
- Humbo Woreda Water Mine and Energy Office (HWWMEO).2011. Annual Report.
- Maher Abu-Madi & Trifunovic (2013) Impacts of supply duration on the design and performance of intermittent distribution systems in West Bank.
- Major, B. B., 2016. ASSESMENT OF WELKITE WATER SUPPLY SYSTEM IN GURAGE ZONE, SNNPR, ETHIOPIA. Wolkite, Ethiopia: s.n.
- Mekonnen, E. (2014). Assessment of urban water supply and sanitation: the case of Bedesa Town, Damot Woyde woreda, SNNP. MSc Thesis. Hawassa University.
- MOWR. (2006a) "Universal access program for water supply and sanitation services 2006 to 2012, International Calendar (1999 to 2005 Ethiopian Calendars).
- MOWR (2006b) Urban Water Supply Design Criteria. Water Resources Administration Urban Water Supply and Sanitation Department.
- NG Leigh (2019) Sustainable and resilient urban water systems: The role of decentralization and planning.
- Samuel Chaka (2017) Evaluation of Hydraulic performance of Gravity Water Supply System (The Case of Likimse-Abela Water Supply System).
- Saroj Sharma (2008), Performance Indicators of Water Losses in Distribution System.
- Seifu, A. Tilahun (2012). Assessment of water supply and sanitation of Amhara Region.
- S Nyende-Byakika, JM Ndambuki, 2013 Modeling of pressurized water supply Networks that exhibit transient low pressure open channel flow conditions.
- Still, D., 2017. Key Performance Indicators in Rural Water Supply. Pietermaritzburg,South Africa: s.n performance assessment of distribution network.
- WHO (2014). World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. Progress on Sanitation and Drinking Water 2015 update and MDG Assessment.